相关习题
 0  225292  225300  225306  225310  225316  225318  225322  225328  225330  225336  225342  225346  225348  225352  225358  225360  225366  225370  225372  225376  225378  225382  225384  225386  225387  225388  225390  225391  225392  225394  225396  225400  225402  225406  225408  225412  225418  225420  225426  225430  225432  225436  225442  225448  225450  225456  225460  225462  225468  225472  225478  225486  266669 

科目: 来源: 题型:选择题

9.在《九章算术》中,将有三条棱互相平行且有一个面为梯形的五面体称之为羡除,现有一个羡除如图所示,面ABC、面ABFE、面CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是(  )
A.110B.116C.118D.120

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知曲线r的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数);以原点为极点,x轴的非负半轴为极轴,建立极坐标系,直线l的极坐标方程为2ρsin(θ-$\frac{π}{6}$)=9.
(I)求曲线Γ的普通方程以及直线l的直角坐标方程:
(Ⅱ)设l′:x-y-1=0与x轴的交点为A,P为曲线Γ上的点,记P到直线l的距离为d,若|AP|=d,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

7.对任意正整数n,设an是方程x2+$\frac{x}{n}$=1的正根.求证:
(1)an+1>an
(2)$\frac{1}{2{a}_{2}}$+$\frac{1}{3{a}_{3}}$+…+$\frac{1}{n{a}_{n}}$<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在数列{an}中,从数列{an}中选出n(n≥3)项并按原顺序组成新的数列记为{bn},并称{bn}为数列{an}的n项子列,例如an=$\frac{1}{n}$,数列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{5}$,$\frac{1}{8}$为{an}的一个4项子列.
(1)试写出数列{an}的一个3项子列,并使其为等差数列;
(2)若an=$\frac{1}{n}$,{bn}为数列{an}的一个5项子列,且{bn}为等差数列,证明:{bn}的公差d满足-$\frac{1}{8}$<d<0;
(3)若{an}是公差不为0的等差数列,其子列a${\;}_{{k}_{1}}$,a${\;}_{{k}_{2}}$,a${\;}_{{k}_{3}}$,a${\;}_{{k}_{n}}$,…恰为等比数列,且k1=1,k2=3,k3=7,令Sn=k1+k2+…+kn,求证:$\frac{6}{{3}^{2}({S}_{1}+1+2)-12}$+$\frac{6}{{3}^{3}({S}_{2}+2+2)-12}$+$\frac{6}{{3}^{4}({S}_{3}+3+2)-12}$+…+$\frac{6}{{3}^{n+1}({S}_{n}+n+2)-12}$<$\frac{97}{340}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.长方体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,E为线段A1C上的动点,则满足ED⊥ED1的点E的个数为(  )
A.0B.1C.2D.无数个

查看答案和解析>>

科目: 来源: 题型:填空题

4.设函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$,其中R为实数集,Q为理数集,关于函数f(x)有如下四个命题:
①f(f(x))=0;
②函数f(x)是偶函数;
③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x恒成立;
④函数f(x)图象上至少存在三个点A、B、C,使得△ABC为等边三角形.
其中是真命题的序号是②③④(写出所有真命题的序号)

查看答案和解析>>

科目: 来源: 题型:解答题

3.某工厂准备裁减人员,已知该工厂现有工人2m(80<m<300)人,据评估,在生产条件不变的情况下,每裁减1人,留岗人员每人每年多创利$\frac{n}{50}$万元,但工厂需支付被裁减人员每人每年$\frac{4n}{5}$万元生活费,且工厂正常生产人数不少于现有人数的$\frac{3}{4}$(注:效益=工人创利-被裁减人员生活费).
(1)求该厂的经济效益y(万元)与裁员人数x的函数关系;
(2)为获得最大经济效益,该厂应裁员多少人?

查看答案和解析>>

科目: 来源: 题型:填空题

2.将一个圆锥沿母线剪开,其侧面展开图是半径为2的半圆,则原来的圆锥的高为$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设全集是U=N,A={2},B={x|x2-2x+m=0},若(∁uA)∩B=∅,则m的取值范围是m≠1.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知有穷数列:${a_1},{a_2},{a_3},…,{a_k}\;(k∈{N^*},k≥3)$的各项均为正数,且满足条件:
①a1=ak;②${a_n}+\frac{2}{a_n}=2{a_{n+1}}+\frac{1}{{{a_{n+1}}}}\;\;(n=1,2,3,…,k-1)$.
(Ⅰ)若k=3,a1=2,求出这个数列;
(Ⅱ)若k=4,求a1的所有取值的集合;
(Ⅲ)若k是偶数,求a1的最大值(用k表示).

查看答案和解析>>

同步练习册答案