相关习题
 0  225398  225406  225412  225416  225422  225424  225428  225434  225436  225442  225448  225452  225454  225458  225464  225466  225472  225476  225478  225482  225484  225488  225490  225492  225493  225494  225496  225497  225498  225500  225502  225506  225508  225512  225514  225518  225524  225526  225532  225536  225538  225542  225548  225554  225556  225562  225566  225568  225574  225578  225584  225592  266669 

科目: 来源: 题型:填空题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且满足ccosB=(2a+b)cos(π-C).
(1)求角C的大小;
(2)若c=4,△ABC的面积为$\sqrt{3}$,求a+b的值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.某市8所中学生参加比赛的得分用茎叶图表示(如图)其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(  )
A.91   5.5B.91  5C.92  5.5D.92 5

查看答案和解析>>

科目: 来源: 题型:解答题

14.进入冬季以来,我国北方地区的雾霾天气持续出现,极大的影响了人们的健康和出行,我市环保局对该市2015年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为(5,15],(15,25],(25,35],(35,45],由此得到样本的空气质量指数频率分布直方图,如图.
(1)求a的值;
(2)如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从今年的监测数据中随机抽取3天的数值,其中达到“特优等级”的天数为X.求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

13.若数列an}的前n项和为Sn,对任意正整数n都有Sn=2an-1,则S6等于63.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知A,B,C,D均在球O的球面上,AB=BC=1,AC=$\sqrt{3}$,若三棱锥D-ABC体积的最大值是$\frac{1}{4}$.则球O的表面积为(  )
A.$\frac{4}{3}$πB.$\frac{8}{3}$πC.$\frac{16}{3}$πD.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知P是直线;“3x+4y+13=0的动点,PA是圆C:x2+y2-2x-2y-2=0的一条切线,A是切点,那么△PAC的面积的最小值是(  )
A.5$\sqrt{3}$B.4$\sqrt{3}$C.3$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的中点,则四面体A1PQD的正视图、侧视图和俯视图的面积之和为(  )
A.$\frac{5}{4}$B.2C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

9.某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:
车型A型B型C型
频数204040
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
价格(万元)2523.52220.5
销售量(辆)30333639
已知A型汽车的购买量y与价格x符合如下线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知各项为正的等比数列{an}的前n项和为Sn,S4=30,过点P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直线的一个方向向量为(-1,-1)
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{log}_{2}{a}_{n+2}•{log}_{2}{a}_{n}}$,数列{bn}的前n项和为Tn,证明:对于任意n∈N*,都有Tn$<\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知直线y=kx与圆C:(x-4)2+y2=r2相切,圆C以x轴为旋转轴转一周后,得到的几何体的表面积为S=16π,则k的值为±$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案