相关习题
 0  225505  225513  225519  225523  225529  225531  225535  225541  225543  225549  225555  225559  225561  225565  225571  225573  225579  225583  225585  225589  225591  225595  225597  225599  225600  225601  225603  225604  225605  225607  225609  225613  225615  225619  225621  225625  225631  225633  225639  225643  225645  225649  225655  225661  225663  225669  225673  225675  225681  225685  225691  225699  266669 

科目: 来源: 题型:解答题

10.设全集U=R,集合A={x|x>2},B={x|ax-1>0,a∈R}.
(1)当a=2时,求A∩B;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2
(1)求(2$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$;
(2)求:|2$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知若x,y满足约束条件$\left\{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+2y≤5}\end{array}\right.$,则z=y-$\frac{1}{3}$x的最小值为-$\frac{2}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,2),2$\overrightarrow{a}$+$\overrightarrow{b}$=(3,2),则$\overrightarrow{b}$=(  )
A.(1,2)B.(1,-2)C.(5,6)D.(2,0)

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,且函数f(x+$\frac{π}{12}$)是偶函数,下列判断正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点($\frac{7π}{12}$,0)d对称
C.函数f(x)的图象关于直线x=-$\frac{7π}{12}$对称
D.函数f(x)在[$\frac{3π}{4}$,π]上单调递增

查看答案和解析>>

科目: 来源: 题型:填空题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A=120°,b=1,且△ABC的面积为$\sqrt{3}$,则 $\frac{b+c}{sinB+sinC}$=2$\sqrt{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知各项均不为零的数列{an}满足a1=a(a>0),当n≥2时,an,0,Sn•Sn-1成等差数列,其中Sn为数列{an}前n项和.
(1)用a表示a2,a3
(2)求数列{an}的通项公式(用a表示);
(3){an}中是否存在连续的三项ak-1,ak,ak+1为等差数列?若存在,求出k及对应的a的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=sinxsin(x+$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C所对的边分别为a,b,c,若f(C)=$\frac{3}{4}$,a=2,且△ABC的面积为2$\sqrt{3}$,求c的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.在等比数列{an}中,1≤a1≤$\sqrt{2}$≤a2≤2,Sn是其前n项和,则S10的取值范围为[10$\sqrt{2}$,1023].

查看答案和解析>>

科目: 来源: 题型:填空题

1.设f(x)=asin2x+bcos2x(a,b∈R),若f(x)的最大值为$\sqrt{5}$,则a+b的取值范围为[-$\sqrt{10}$,$\sqrt{10}$].

查看答案和解析>>

同步练习册答案