相关习题
 0  225510  225518  225524  225528  225534  225536  225540  225546  225548  225554  225560  225564  225566  225570  225576  225578  225584  225588  225590  225594  225596  225600  225602  225604  225605  225606  225608  225609  225610  225612  225614  225618  225620  225624  225626  225630  225636  225638  225644  225648  225650  225654  225660  225666  225668  225674  225678  225680  225686  225690  225696  225704  266669 

科目: 来源: 题型:选择题

20.已知函数f(x)的图象是连续不断的,有如下的对应值表:
x123456
y123.5621.45-7.8211.45-53.76-128.88
则函数y=f(x)在区间[1,6]上的零点至少有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目: 来源: 题型:解答题

19.现将甲、乙两名学生的6次模拟测试成绩(百分制)制成如图所示的茎叶图:
(1)若对甲、乙两人各再模拟测试6次,试估算6次测试成绩中甲、乙两人的成绩位于(80,100)内的次数;
(2)现对甲、乙两人作最后一次模拟测试,求甲、乙两人的成绩至少有一人位于(80,100)内的概率;
(3)若每次模拟测试甲、乙两人同时考,且一次模拟测试中两人的成绩至少有一人位于(80,100),该次为合格,求再模拟十二次合格次数X的数学期望.
(注:本题中的频率视为概率)

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知Sn为数列{an}的前n项和,且向量$\overrightarrow{a}$=(-4,n),$\overrightarrow{b}$=(Sn,n+3)垂直.
(1)求数列{an}的通项公式;
(2)数列{$\frac{1}{(2{a}_{n}+1)n}$}前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知抛物线C:y2=4x的焦点为F,过点M(-1,0)且斜率为k的直线l与抛物线C相交于不同的两点A、B,设直线FA,FB的斜率分别为k1,k2,且(k1-1)(k2-1)<0.
(1)求k的取值范围;
(2)设点A关于x轴的对称点为N,求△MNB面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=x2-a|x-1|,其中a∈R.
(1)若函数g(x)=f(x)-$\frac{3}{4}$有四个零点,求实数a的取值范围:
(2)设函数f(x)在区间[-2,2]上的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=ax2-$\frac{1}{2}$x+c(a,c∈R)满足条件f(1)=0,且对任意实数x都有f(x)≥0.
(1)求a、c的值:
(2)是否存在实数m,使函数g(x)=4f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

14.若函数f(x)=Asin(ωx+φ)(ω>0,A>0,0<φ<π)的部分图象如图所示,则f(0)+f(1)+f(2)+…+f(2008)=(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知△ABC中,AC=8,cosA=$\frac{1}{2}$,S△ABC=8$\sqrt{3}$
(1)求BC的值以及△ABC的外接圆的面积;
(2)设函数f(x)=2(cosCsinx-cosAcosx)+2,将函数f(x)的图象向下平移两个单位,再将横坐标变为原来的$\frac{1}{2}$,得到函数g(x)的图象,求函数g(x)的单调增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设全集U=R,集合A={x|-2<x<2},B={x|x≥1},求A∪B,∁u(A∪B),(∁uA)∩(∁uB).

查看答案和解析>>

科目: 来源: 题型:选择题

11.设i是虚数单位,则复数z=($\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)2的共轭复数$\overline{z}$=(  )
A.-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iB.-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iC.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

同步练习册答案