相关习题
 0  225738  225746  225752  225756  225762  225764  225768  225774  225776  225782  225788  225792  225794  225798  225804  225806  225812  225816  225818  225822  225824  225828  225830  225832  225833  225834  225836  225837  225838  225840  225842  225846  225848  225852  225854  225858  225864  225866  225872  225876  225878  225882  225888  225894  225896  225902  225906  225908  225914  225918  225924  225932  266669 

科目: 来源: 题型:解答题

10.已知函数f(x)=$\frac{xln(x-1)}{x-2}$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)求证:当x∈(1,2)∪(2,+∞)时,f(x)>2.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知sin($\frac{π}{4}$+α)sin($\frac{π}{4}$-α)=$\frac{1}{6}$,α∈($\frac{π}{2}$,π),求sin4α.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=2sin2x-2cos2x(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)取得最大值时x的集合;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知tan$\frac{α}{2}$=-$\frac{1}{2}$,求cos(α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设an=$\frac{8n}{3}$•cosnπ•sin$\frac{nπ}{3}$•(sin$\frac{n+1}{3}$π-$\frac{1}{2}$sin$\frac{nπ}{3}$)(n∈N*),则数列{an}的前2015项和S2015=2016.

查看答案和解析>>

科目: 来源: 题型:解答题

5.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$,满足$\overrightarrow{d}$=($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow{b}$-($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$,求证:$\overrightarrow{a}$⊥$\overrightarrow{d}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.若14400所有正因数从小到大构成的数列d1,d2,…,dn,则Sn=$\frac{1}{{d}_{1}}$+$\frac{1}{{d}_{2}}$+…+$\frac{1}{{d}_{n}}$=$\frac{51181}{14400}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知向量$\overrightarrow{m}$=(cosx,1-asinx),$\overrightarrow{n}$=(cosx,2),其中a∈R,x∈R,设f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,且函数f(x)的最大值为g(a).
(I)求函数g(a)的解析式;
(Ⅱ)设0≤θ<2π,求函数g(2cosθ+1)的最大值和最小值以及对应的θ值;
(Ⅲ)若对于任意的实数x∈R,g(x)≥kx+$\frac{5}{2}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且a1=3,Sn+1-2Sn=1-n,n∈N*
(1)求数列{an}的通项公式;
(2)证明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在平面直角坐标系内,已知B(-3,3$\sqrt{3}$),C(3,-3$\sqrt{3}$),且H(x,y)是曲线x2+y2=1上任意一点,则$\overline{BH}$•$\overline{CH}$的值为-35.

查看答案和解析>>

同步练习册答案