相关习题
 0  225763  225771  225777  225781  225787  225789  225793  225799  225801  225807  225813  225817  225819  225823  225829  225831  225837  225841  225843  225847  225849  225853  225855  225857  225858  225859  225861  225862  225863  225865  225867  225871  225873  225877  225879  225883  225889  225891  225897  225901  225903  225907  225913  225919  225921  225927  225931  225933  225939  225943  225949  225957  266669 

科目: 来源: 题型:解答题

17.已知a1,a2,…,an是由m(n∈N*)个整数1,2,…,n按任意次序排列而成的数列,数列{bn}满足bn=n+1-ak(k=1,2,…,n).
(1)当n=3时,写出数列{an}和{bn},使得a2=3b2
(2)证明:当n为正偶数时,不存在满足ak=bk(k=1,2,…,n)的数列{an};
(3)若c1,c2,…,cn是1,2,…,n按从大到小的顺序排列而成的数列,写出ck(k=1,2,…,n),并用含n的式子表示c1+2c2+…+ncn
(参考:12+22+…+n2=$\frac{1}{6}$n(n+1)(2n+1))

查看答案和解析>>

科目: 来源: 题型:解答题

16.定义符号函数sgn(x)=$\left\{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}\right.$,已知a,b∈R,f(x)=x|x-a|sgn(x-1)+b.
(1)求f(2)-f(1)关于a的表达式,并求f(2)-f(1)的最小值.
(2)当b=$\frac{1}{2}$时,函数f(x)在(0,1)上有唯一零点,求a的取值范围.
(3)已知存在a,使得f(x)<0对任意的x∈[1,2]恒成立,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,且对任意n∈N+,都有Sn=2an-2.
(I)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}+{3}^{n}}$,数列{bn}的前n项和为Tn.证明:$\frac{1}{5}$≤Tn≤$\frac{\sqrt{6}+1}{10}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设函a=log3.14π,b=log${\;}_{\frac{1}{3.15}}$(π${\;}^{\frac{1}{2016}}$),c=π${\;}^{-\frac{1}{2016}}$,则(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目: 来源: 题型:选择题

13.若存在x∈(0,+∞),使不等式ex(x2-x+1)(ax+3a-1)<1成立,则(  )
A.0$<a<\frac{1}{3}$B.a$<\frac{2}{e+1}$C.a$<\frac{2}{3}$D.a$<\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知△ABC中角A,B,C对边分别为a,b,c,且满足$2asin(C+\frac{π}{6})=b+c$.
(Ⅰ)求A的值;
(Ⅱ)若$B=\frac{π}{4},b-a=\sqrt{2}-\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

11.函数f(x)=loga(6-ax)在(0,2)上为减函数,则a的取值范围是(1,3].

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=lnx-kx+1.
(1)若f(x)≤0恒成立,试确定实数k的取值范围;
(2)证明:$\frac{ln2}{3}$+$\frac{ln3}{8}$+$\frac{ln4}{15}$+…$\frac{lnn}{{n}^{2}-1}$+(1+$\frac{1}{n}$)n<$\frac{{n}^{2}+n+10}{4}$(n∈N*且n>1).

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知命题p:关于x的方程x2-mx+m+3=0无实数根;命题q:方程$\frac{x^2}{8}+\frac{y^2}{m-1}$=1表示焦点在x轴上的椭圆;若命题p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知0<x<$\frac{π}{2}$,则函数$f(x)={3^{{{sin}^2}x}}+{3^{{{cos}^2}x}}$的最小值是2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案