相关习题
 0  225769  225777  225783  225787  225793  225795  225799  225805  225807  225813  225819  225823  225825  225829  225835  225837  225843  225847  225849  225853  225855  225859  225861  225863  225864  225865  225867  225868  225869  225871  225873  225877  225879  225883  225885  225889  225895  225897  225903  225907  225909  225913  225919  225925  225927  225933  225937  225939  225945  225949  225955  225963  266669 

科目: 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(1)若函数f(x)的最小值为0,求a的值.
(2)证明:ex+(lnx-1)sinx>0.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设函数f(x)=|x+2|-|x-1|.
(1)求不等式f(x)>1解集;
(2)若关于x的不等式f(x)+4≥|1-2m|有解,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$x2-(2a+2)x+(2a+1)lnx
(1)若曲线y=f(x)在点(2,f(2))处的切线的斜率小于0,求f(x)的单调区间;
(2)对任意的a∈[$\frac{3}{2}$,$\frac{5}{2}$],x1,x2∈[1,2](x1≠x2),恒有|f(x1)-f(x2)|<λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求正数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

14.设x,y满足约束条件$\left\{\begin{array}{l}1≤x≤3\\-1≤x-y≤0\end{array}\right.$,则z=x-2y的取值范围为[-5,-1].

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知命题p:点M(1,3)不在圆(x+m)2+(y-m)2=16的内部,
命题q:“曲线${C_1}:\frac{x^2}{m^2}+\frac{y^2}{2m+8}=1$表示焦点在x轴上的椭圆”,
命题s:“曲线${C_2}:\frac{x^2}{m-t}+\frac{y^2}{m-t-1}=1$表示双曲线”.
(1)若“p且q”是真命题,求m的取值范围;
(2)若?s是?q的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则$\overrightarrow{a}$与$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.函数y=f(x)与函数y=g(x) 互为反函数,且f(x)=2x,则函数y=g(x2-1)的定义域是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<π)的部分图象如图所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,f($\frac{7π}{12}$)=0,f($\frac{11π}{12}$)=0,则A=(  )
A.1B.xC.0D.$\frac{2}{3}$$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.函数f(x)=$\sqrt{tanx-1}$的定义域是(  )
A.$[{\frac{π}{4}+kπ,+∞}),k∈Z$B.$[{\frac{π}{4}+kπ,\frac{π}{2}+kπ}),k∈Z$C.$[{\frac{π}{4}+kπ,\frac{π}{2}+kπ}]$,k∈ZD.$[{\frac{π}{4},\frac{π}{2}})$

查看答案和解析>>

科目: 来源: 题型:填空题

8.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足c2=a2+b2-$\sqrt{2}$ab,则角C=45°.

查看答案和解析>>

同步练习册答案