相关习题
 0  225841  225849  225855  225859  225865  225867  225871  225877  225879  225885  225891  225895  225897  225901  225907  225909  225915  225919  225921  225925  225927  225931  225933  225935  225936  225937  225939  225940  225941  225943  225945  225949  225951  225955  225957  225961  225967  225969  225975  225979  225981  225985  225991  225997  225999  226005  226009  226011  226017  226021  226027  226035  266669 

科目: 来源: 题型:解答题

8.已知定义域为R的函数f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+a}$是奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)判断函数f(x)在R上的单调性,并利用函数单调性的定义证明;
(Ⅲ)若不等式f(2x-1)+f(k•2x+1+2k)>0在区间[0,+∞)上有解,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图所示,长方形ABCD中,AB=2,BC=4,以D为圆心的两个圆心半圆,半径分别为1和2,G为大半圆直径的右端点,E为大半圆上的一个动点,DE与小半圆交于点F,EM⊥BC,垂足为M,EM与大半圆直径交于点H,FN⊥EM,垂足为N.
(Ⅰ)设∠GDE=30°,求MN的长度;
(Ⅱ)求△BMN的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{-(x+1)}^{2}+4p,x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$且f[f($\sqrt{2}$)]=$\frac{7}{4}$
(Ⅰ)求实数p的值;
(Ⅱ)若方程f(x)-m=0有3个不同的解,求实数m的取值范围;
(Ⅲ)若x∈[-1,16]时,f(x)≤n+1恒成立,求实数n的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=2(sin$\frac{π}{4}x+cos\frac{π}{4}x$)•cos$\frac{π}{4}x$-1.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[-1,1]时,求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知sinα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{3\sqrt{10}}{10}$,α∈($\frac{π}{2}$,π),β∈(-$\frac{π}{2}$,0)
(Ⅰ)求cosα,tanβ;
(Ⅱ)求tan(α+β)的值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.△ABC的三个顶点都在圆O上,$\overrightarrow{AO}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,且|$\overrightarrow{BC}$|=10,则圆O的面积为25π.

查看答案和解析>>

科目: 来源: 题型:填空题

2.如果tanα=$\frac{5}{12}$,那么cosα的值为±$\frac{12}{13}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,且f(0)=f($\frac{π}{3}$),则(  )
A.f(x)的最小正周期为2πB.f(x)的图象关于直线x=$\frac{5π}{6}$对称
C.f($\frac{2π}{3}$)=-2D.f(x)在[0,$\frac{π}{4}$]上是增函数

查看答案和解析>>

科目: 来源: 题型:选择题

20.把函数y=sin(4x+φ)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有的点向右平$\frac{π}{3}$个单位,所得图象关于y轴对称,则φ的一个可能值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.若cos($\frac{π}{6}-x$)=-$\frac{1}{3}$,则cos($2x+\frac{2π}{3}$)=(  )
A.$±\frac{7}{9}$B.-$\frac{7}{9}$C.$\frac{4\sqrt{2}}{9}$D.$\frac{7}{9}$

查看答案和解析>>

同步练习册答案