相关习题
 0  225889  225897  225903  225907  225913  225915  225919  225925  225927  225933  225939  225943  225945  225949  225955  225957  225963  225967  225969  225973  225975  225979  225981  225983  225984  225985  225987  225988  225989  225991  225993  225997  225999  226003  226005  226009  226015  226017  226023  226027  226029  226033  226039  226045  226047  226053  226057  226059  226065  226069  226075  226083  266669 

科目: 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C的参数方程为:$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),把曲线C上所有点的横坐标不变,纵坐标压缩为原来的一半得到曲线G,以平面直角坐标系的原点为极点,x正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ-2sinθ)=4.
(1)求曲线G与直线l的平面直角坐标方程;
(2)P是曲线G上的一个动点,求点P到直线l的最大距离.

查看答案和解析>>

科目: 来源: 题型:解答题

12.PA⊥矩形ABCD所在的平面,且AB=a,AD=b.问:在BC边上是否存在一点E,使DE⊥平面PAE?若不存在,说明理由;若存在,求出恰有一点时E的位置.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图所示,在空间四边形ABCD中,E、F、G、H分别为AB、BC、CD、AD的中点,判断平面EG与直线BD是否平行?平面EG与直线AC是否平行?直线BD与直线AC是什么位置关系?

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知圆C关于直线x+y+2=0对称,且过点P(-2,2)和原点O.
(1)求圆C的方程;
(2)相互垂直的两条直线l1,l2都过点A(-1,0),若l1,l2被圆C所截得弦长相等,求此时直线l1的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)满足f($\frac{x}{2}$)=x+$\frac{1}{x}$.
(1)求函数的解析式;
(2)判断函数f(x)在区间($\frac{1}{2}$,+∞)上的单调性,并用定义法加以证明.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知直线l:x-2y-1=0,直线l1过点(-1,2).
(1)若l1⊥l,求直线l1的方程;
(2)若l1∥l,求直线l1的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知集合A={x|1≤x<4},B={x|x-a<0}.
(1)当a=3时,求A∩B,A∪B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知满足条件x2+y2≤1的点(x,y)构成的平面区域的面积为S1,满足条件[x2]+[y]2≤1的点(x,y)构成的平面区域的面积为S2,(其中[x]、[y]分别表示不大于x、y的最大整数),则点(S1,S2)一定在(  )
A.直线x-y=0上B.直线2x-y-1=0右下方的区域内
C.直线x+y-8=0左下方的区域内D.直线x-y+2=0左上方的区域内

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=sin(ωx+φ),ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,相邻两对称轴间的距离为π,若将y=f(x)的图象向右平移$\frac{π}{6}$个单位,所得的函数y=g(x)为奇函数.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若关于x的方程2[g(x)]2-m[g(x)]+1=0在区间[0,$\frac{π}{2}$]上有两个不相等的实根,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知$\overrightarrow{a}$=($\sqrt{3}$,cos2x),$\overrightarrow{b}$=(sin2x,2),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1.
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)求y=f(x)在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案