相关习题
 0  225890  225898  225904  225908  225914  225916  225920  225926  225928  225934  225940  225944  225946  225950  225956  225958  225964  225968  225970  225974  225976  225980  225982  225984  225985  225986  225988  225989  225990  225992  225994  225998  226000  226004  226006  226010  226016  226018  226024  226028  226030  226034  226040  226046  226048  226054  226058  226060  226066  226070  226076  226084  266669 

科目: 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,满足Sn=$\frac{2}{3}$an+5,且λan+1≤5Sn-S2n对任意的n∈N*恒成立,则实数λ的取值范围[-3,0].

查看答案和解析>>

科目: 来源: 题型:填空题

2.若tanα+tanβ-tanαtanβ+1=0,α,β∈($\frac{π}{2},π$),则α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若${∫}_{0}^{1}$(x2+mx)dx=$\frac{4}{3}$,则在(x2-3x+m)5的展开式中,含x项的系数为(  )
A.-240B.-120C.0D.120

查看答案和解析>>

科目: 来源: 题型:填空题

20.过抛物线x2=4y的焦点F的直线与抛物线交于A.B两点,若AB中点为M(x0,3),则|AB|=8.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的$\frac{7}{8}$时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于(  )
A.$\frac{7}{6}$πB.$\frac{4}{3}$πC.$\frac{2}{3}$πD.$\frac{1}{2}$π

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知各项均为正数的数列{an}的前n项和为Sn,且an-a1=2$\sqrt{{S}_{n-1}{a}_{1}}$(n≥2),若bn=$\frac{{a}_{n+1}}{{a}_{n}}$+$\frac{{a}_{n}}{{a}_{n+1}}$,则bn=$\frac{8{n}^{2}+2}{4{n}^{2}-1}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知C1:ρ=2cosθ-4sinθ,C2:ρsinθ-2ρcosθ+1=0.
(Ⅰ)将C1的方程化为普通方程;
(Ⅱ)求曲线C1与C2两交点之间的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知点F为抛物线C:y2=2px(p>0)的焦点,其到直线x=-$\frac{P}{2}$的距离为2.
(1)求抛物线C的标准方程;
(2)若点P在第一象限,且横坐标为4,过点F作直线PF的垂线交直线x=-$\frac{P}{2}$于点Q,证明:直线PQ与抛物线C只有一个交点.

查看答案和解析>>

科目: 来源: 题型:填空题

15.如图,在Rt△ABC中,AB=4,AC=3,∠A=90°,$\overrightarrow{AP}$=m$\overrightarrow{PB}$,$\overrightarrow{AQ}$=n$\overrightarrow{QC}$,m,n>0,且满足$\frac{1}{m}$+$\frac{1}{n}$=$\frac{1}{2}$,M是BC的中点,对任意的λ∈R,|λ•$\overrightarrow{QP}$+$\overrightarrow{QM}$|的最小值记为f(m),则对任意m>0,f(m)的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.若关于x的方程ax2-1=lnx有两解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案