相关习题
 0  225899  225907  225913  225917  225923  225925  225929  225935  225937  225943  225949  225953  225955  225959  225965  225967  225973  225977  225979  225983  225985  225989  225991  225993  225994  225995  225997  225998  225999  226001  226003  226007  226009  226013  226015  226019  226025  226027  226033  226037  226039  226043  226049  226055  226057  226063  226067  226069  226075  226079  226085  226093  266669 

科目: 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率 e=$\frac{4}{5}$,且经过点(0,3),左右焦点分别为F1,F2
(1)求椭圆C的方程;
(2)过F1作直线l与椭圆C交于A、B两点,求△ABF2的面积S的最大值,并求出S取最大值时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{{\sqrt{3}}}{2}$C.3D.2

查看答案和解析>>

科目: 来源: 题型:选择题

18.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(2,0,2),(2,2,0),(0,2,2),(1,0,0),画该四面体三视图中的主视图时,以zOx平面为投影面,则得到主视图可以为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知斜率为1的直线l过椭圆$\frac{{x}^{2}}{4}$+y2=1的右焦点F交椭圆于A、B两点,
(1)求焦点F的坐标及其离心率 
(2)求弦AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a$>b>0)的左右顶点为A,B,右焦点为F,若椭圆上的点到焦点F的最大距离为3,且离心率为方程2x2-5x+2=0的根,
(1)求椭圆的标准方程;
(2)若点P为椭圆上任一点,连接AP,PB并分别延长交直线l:x=4于M,N两点,求线段MN的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知点P为矩形ABCD所在平面外一点,AB=3,BC=2,平面PAB∩平面PCD=l.
(1)求证:l⊥AD;
(2)若点P在平面ABCD上的射影0在线段CD上,满足CO=20D,且直线PB与平面ABCD所成角的正切值为$\frac{1}{2}$,求四棱锥P-DABO的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上有一点P(x0,y0),其中${x}_{0}^{2}$=$\frac{{a}^{2}{c}^{2}-{a}^{2}{b}^{2}}{{a}^{2}-{b}^{2}}$,求离心率的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面是边长为4的正方形ABCD,侧棱PA垂直于底面,且PA=3.
(1)求异面直线PB与CD所成的角的大小;(结果用反三角函数表示)
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图所示,在四棱锥P-ABCD中,四边形ABCD是边长为2的正方形,平面ABCD⊥平面PCD,∠PCD=90°,PC=1.5,E是侧棱PC上的动点.
(1)求证:PC⊥平面ABCD;
(2)求四棱锥P-ABCD的体积;
(3)当点E在何位置时,PA∥平面BDE?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:填空题

11.底面为正六边形的六棱锥P-ABCDE,$\overrightarrow{PG}$=$\frac{1}{2}$$\overrightarrow{GB}$,$\overrightarrow{PH}$=$\overrightarrow{HC}$,记三棱锥G-PAH的体积为V1,三棱锥H-PAE的体积为V2,则V1:V2是$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案