相关习题
 0  225937  225945  225951  225955  225961  225963  225967  225973  225975  225981  225987  225991  225993  225997  226003  226005  226011  226015  226017  226021  226023  226027  226029  226031  226032  226033  226035  226036  226037  226039  226041  226045  226047  226051  226053  226057  226063  226065  226071  226075  226077  226081  226087  226093  226095  226101  226105  226107  226113  226117  226123  226131  266669 

科目: 来源: 题型:选择题

20.已知a=ln$\frac{3}{4}$,b=5lg3,c=3${\;}^{-\frac{1}{2}}$,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目: 来源: 题型:解答题

19.某省高中男生升高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16),现从该省某高校三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5],第二组[162.5,167.5],…,第六组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.

(1)求该学校高三年级男生的平均身高;(同一组数据用该区间的中点值作代表)
(2)求被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人数;
(3)从被抽取的50名男生中身高在177.5cm以上(含177.5cm)的人中任意抽取2人,记该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

18.函数f(x)=$\left\{\begin{array}{l}{|lnx-2|,}&{x>0}\\{-{x}^{2}-2x+3,}&{x≤0}\end{array}\right.$,直线y=m与函数f(x)的图象交于四个不同的点,交点横坐标从小到大依次记为a,b,c,d,下列说法正确的是②③.(请写出所有正确答案的序号)
①m∈(3,4);
②abcd∈[0,e4);
③a+b+c+d∈[e5+$\frac{1}{e}$-2,e6+$\frac{1}{{e}^{2}}$-2);
④若关于x的方程f(x)+x=t恰有三个不同实根,则t=3.

查看答案和解析>>

科目: 来源: 题型:填空题

17.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=2a,则角A的取值范围是(0,$\frac{π}{6}$].

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=log5x+x的零点依次为x1、x2、x3,若在如图所示的算法中,另a=x1,b=x2,c=x3,则输出的结果是(  )
A.x1B.x2C.x3D.x2或x3

查看答案和解析>>

科目: 来源: 题型:选择题

15.若f(x)=$\left\{\begin{array}{l}{lgx,}&{x>0}\\{x+{∫}_{0}^{a}3{t}^{2}dt,}&{x≤0}\end{array}\right.$,f(f(1))=1,则a的值是(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目: 来源: 题型:选择题

14.下列命题中正确命题的个数是(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
②“a≠0”是“a2+a≠0”的必要不充分条件;
③若p∧q为假命题,则p,q均为假命题;
④命题p:?x0∈R,使得x02+x0+1<0,则¬p:?x∈R,都有x2+x+1≥0.
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

13.等差数列{an}中,a5、a7是函数f(x)=x2-4x+3的两个零点,则a3+a9等于(  )
A.-4B.-3C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

12.过椭圆Г:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1外一点P(x0,y0)(x0≠±2且y0≠0)向椭圆Г作切线,切点分别为A、B,直线AB交y轴于M,记直线PA、PB、PM的斜率分别为k1、k2、k0
(1)当点P的坐标为(4,3)时,求直线AB的方程;
(2)当x0≠0时,是否存在常数λ,使得$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$=$\frac{λ}{{k}_{0}}$恒成立?若存在,求λ的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$x2+mlnx(m∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线经过点(3,3),求m的值;
(2)设1<m≤e,H(x)=f(x)-(m+1)x,证明:?x1,x2∈[1,m],恒有H(x1)-H(x2)<1.

查看答案和解析>>

同步练习册答案