相关习题
 0  225941  225949  225955  225959  225965  225967  225971  225977  225979  225985  225991  225995  225997  226001  226007  226009  226015  226019  226021  226025  226027  226031  226033  226035  226036  226037  226039  226040  226041  226043  226045  226049  226051  226055  226057  226061  226067  226069  226075  226079  226081  226085  226091  226097  226099  226105  226109  226111  226117  226121  226127  226135  266669 

科目: 来源: 题型:解答题

20.在等差数列{an}中,a2=6,其前n项和为Sn.等比数列{bn}的各项均为正数,b1=1,且b2+S4=33,b3=S2
(1)求an与bn
(2)设数列{cn}的前n项和为Tn,且cn=4bn-a5,求使不等式Tn>S6成立的最小正整数n的值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.8名同学排成2排,每排4人,共有多少种排法(  )
A.2${A}_{4}^{4}$B.${A}_{4}^{4}$•${A}_{3}^{3}$C.${A}_{4}^{4}$•${A}_{4}^{4}$D.${A}_{8}^{8}$

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知A、B、C三点不共线,O为平面ABC外的一点,$\overrightarrow{OP}$=$\frac{1}{5}$$\overrightarrow{OA}$+$\frac{7}{3}$$\overrightarrow{OB}$+$λ\overrightarrow{OC}$(λ∈R)确定的点P与A、B、C四点共面,则λ的值为-$\frac{23}{15}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若正六棱锥内接于半径为3的球,则当正六棱锥的体积最大时,它的底面边长为2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2$\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{2}Q}$=$\overrightarrow{0}$.若过A、Q、F2三点的圆恰好与直线1:x-$\sqrt{3}$y-3=0相切.
(1)求椭圆C的方程;
(2)设椭圆的右顶点为B,过椭圆右焦点F2作斜率为k的直线1与椭圆C交于M、N两点.当△MBN的面积为$\frac{6\sqrt{2}}{7}$时,求直线1的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=-asinx+b,(a,b∈R).
(1)若a>0,当x∈[-$\frac{π}{2}$,$\frac{π}{6}$]时,函数f(x)的最大值为0,最小值为-4,求a,b的值;
(2)当b=1,函数g(x)=f(x)+cos2x,x∈[$\frac{π}{6}$,$\frac{7π}{6}$]的最大值为3,求a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知f(x)=lg$\frac{2x}{a+bx}$,f(1)=0且当x>0时,恒有f(x)-f($\frac{1}{x}$)=lgx,求常数a,b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=2cos(x-$\frac{2}{3}$π)+2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函数f(x)的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=2sinxcos(x+$\frac{π}{3}$)+$\sqrt{3}$sin2x+$\frac{\sqrt{3}}{2}$,x∈R.
(1)求f(x)的最小正周期及单调递增区间;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,求g(x)在[-$\frac{π}{4}$,$\frac{π}{3}$]上的最小值和最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.己知四棱锥P一ABCD,底面ABCD是矩形,PA⊥底面ABCD,且PA=AD,M、N分别AB、PC的中点.
(1)求证平面MND⊥平面PCD;
(2)若PA=AD=2,AB=1,求直线MD与平面PCD所成角的大小;
(3)在(2)的条件下,求直线MD与直线PB所成角的大小.

查看答案和解析>>

同步练习册答案