相关习题
 0  226169  226177  226183  226187  226193  226195  226199  226205  226207  226213  226219  226223  226225  226229  226235  226237  226243  226247  226249  226253  226255  226259  226261  226263  226264  226265  226267  226268  226269  226271  226273  226277  226279  226283  226285  226289  226295  226297  226303  226307  226309  226313  226319  226325  226327  226333  226337  226339  226345  226349  226355  226363  266669 

科目: 来源: 题型:解答题

10.已知a、b、m均为正数,且a<b,求证:$\frac{a+m}{b+m}$>$\frac{a}{b}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于3?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求证:BC⊥A1D;
(Ⅱ)求证:平面A1BC⊥平面A1BD;
(Ⅲ)求点C到平面A1BD的距离.

查看答案和解析>>

科目: 来源: 题型:填空题

7.在棱长为2的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=$2\sqrt{5}$的点P的个数为12;若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,PD=AD=1,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)求D到平面PBC的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E、F,且EF=1,则下列结论中错误的是(  )
A.EF∥平面ABCDB.AC⊥BE
C.三棱锥A-BEF体积为定值D.△BEF与△AEF面积相等

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,在四面体ABCD中,AB⊥BD,CD⊥DB,若AB与CD所成的角的大小为60°,则二面角C-BD-A的大小为(  )
A.60°或90°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,圆O为△ABC的外接圆,D为$\widehat{AC}$的中点,BD交AC于E.
(Ⅰ)证明:AD2=DE•DB;
(Ⅱ)若AD∥BC,DE=2EB,AD=$\sqrt{6}$,求圆O的半径.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD=$\frac{π}{3}$,AB=1,CD=3,M为PC上一点,MC=2PM.
(Ⅰ)证明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求点D到平面PBC的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知三棱锥O-ABC的顶点A,B,C都在半径为2的球面上,O是球心,∠AOB=60°,当△AOC和△BOC的面积之和最大时,则O到面ABC的距离为(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{7}$D.$\frac{{2\sqrt{21}}}{7}$

查看答案和解析>>

同步练习册答案