相关习题
 0  226180  226188  226194  226198  226204  226206  226210  226216  226218  226224  226230  226234  226236  226240  226246  226248  226254  226258  226260  226264  226266  226270  226272  226274  226275  226276  226278  226279  226280  226282  226284  226288  226290  226294  226296  226300  226306  226308  226314  226318  226320  226324  226330  226336  226338  226344  226348  226350  226356  226360  226366  226374  266669 

科目: 来源: 题型:选择题

20.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{1}{2}$,则m=(  )
A.12B.18C.$\frac{27}{4}$D.12或$\frac{27}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆的左、右焦点分别是F1,F2,且|F1F2|=2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P为椭圆上一点,PF1与y轴相交于Q,且$\overrightarrow{F_1P}$=2$\overrightarrow{F_1Q}$.若PF1与椭圆相交于另一点R,求|PR|的长.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆的左、右焦点分别是F1、F2,点M为椭圆上的一个动点,△MF1F2面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P为椭圆上一点,PF1与y轴相交于Q,且$\overrightarrow{{F}_{1}P}$=2$\overrightarrow{{F}_{1}Q}$.若PF1与椭圆相交于另一点R,求△PRF2的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

17.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的点到直线4x-5y+40=0的最小距离为$\frac{15\sqrt{41}}{41}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中心的直线交椭圆于A,B两点,右焦点为F2(c,0),则△ABF2的最大面积为(  )
A.b2B.abC.acD.bc

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数$f(x)={log_a}(\sqrt{{x^2}+1}+x)$.
(1)判断并证明f(x)的奇偶性;
(2)若两个函数F(x)与G(x)在闭区间[p,q]上恒满足|F(x)-G(x)|>2,则称函数F(x)与G(x)在闭区间[p,q]上是分离的.是否存在实数a使得y=f(x)的反函数y=f-1(x)与g(x)=ax在闭区间[1,2]上分离?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.为振兴苏区发展,赣州市2016年计划投入专项资金加强红色文化基础设施改造.据调查,改造后预计该市在一个月内(以30天记),红色文化旅游人数f(x)(万人)与日期x(日)的函数关系近似满足:$f(x)=3-\frac{1}{20}x$,人均消费g(x)(元)与日期x(日)的函数关系近似满足:g(x)=60-|x-20|.
(1)求该市旅游日收入p(x)(万元)与日期x(1≤x≤30,x∈N*)的函数关系式;
(2)当x取何值时,该市旅游日收入p(x)最大.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)图象的一个最高点坐标是$(\frac{π}{12},1)$,相邻的两对称中心的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变化得到.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数$f(x)=\frac{{\sqrt{a}x+b}}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且$f(\frac{1}{2})=\frac{2}{5}$.
(1)求实数a,b的值;
(2)判断并证明f(x)在(-1,1)上的单调性.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知集合A={x|x2-8x+12≤0},B={x|5-2m≤x≤m+1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案