相关习题
 0  226221  226229  226235  226239  226245  226247  226251  226257  226259  226265  226271  226275  226277  226281  226287  226289  226295  226299  226301  226305  226307  226311  226313  226315  226316  226317  226319  226320  226321  226323  226325  226329  226331  226335  226337  226341  226347  226349  226355  226359  226361  226365  226371  226377  226379  226385  226389  226391  226397  226401  226407  226415  266669 

科目: 来源: 题型:解答题

10.如图所示,已知在梯形ABCD中,AB∥CD,且AB=3CD,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=2cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
(I)求函数f(x)的递增区间;
(2)求函数f(x)的对称轴和对称中心;
(3)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

8.①把11°15′化成弧度;
②把$\frac{5π}{18}$rad化成度.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{8}{9}$,求tanα的值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知A,B两地间的距离为20km,B,C两地间的距离为40km,现测得∠ABC=120°,则A,C两地间的距离为(  )
A.20kmB.20$\sqrt{3}$kmC.20$\sqrt{5}$kmD.20$\sqrt{7}$km

查看答案和解析>>

科目: 来源: 题型:填空题

5.若钝角三角形ABC的三个内角满足:∠A<∠B<∠C,2∠B=∠A+∠C,且最大边长与最小边长的比值为m,则m的取值范围是(2,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

4.在△ABC中,sinA•sinB=sin2C-sin2A-sin2B,则角C为(  )
A.60°B.45°C.120°D.30°

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的中心为坐标原点O,左焦点为F,以OF为直径的圆交双曲线于点P,且4$\overrightarrow{OP}$•$\overrightarrow{OF}$=$\overrightarrow{OF}$2,则该双曲线的离心率是(  )
A.$\frac{\sqrt{10}-\sqrt{2}}{2}$B.$\frac{\sqrt{10}+\sqrt{2}}{2}$C.$\sqrt{7}$-$\sqrt{3}$D.$\sqrt{7}$+$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.A,B,O是平面内不共线的三个定点,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,点P关于点A的对称点为Q,点Q关于点B的对称点为R,则$\overrightarrow{PR}$等于(  )
A.$\overrightarrow{a}$-$\overrightarrow{b}$B.2($\overrightarrow{b}$-$\overrightarrow{a}$)C.2($\overrightarrow{a}$-$\overrightarrow{b}$)D.$\overrightarrow{b}$-$\overrightarrow{a}$

查看答案和解析>>

科目: 来源: 题型:填空题

1.若实数(a>0,b>0),且$\frac{1}{a}$+$\frac{2}{b}$=1,则当$\frac{2a+b}{8}$的最小值为m,函数f(x)=e-mx|lnx|-1的零点个数为1.

查看答案和解析>>

同步练习册答案