相关习题
 0  226372  226380  226386  226390  226396  226398  226402  226408  226410  226416  226422  226426  226428  226432  226438  226440  226446  226450  226452  226456  226458  226462  226464  226466  226467  226468  226470  226471  226472  226474  226476  226480  226482  226486  226488  226492  226498  226500  226506  226510  226512  226516  226522  226528  226530  226536  226540  226542  226548  226552  226558  226566  266669 

科目: 来源: 题型:解答题

2.已知曲线C的极坐标方程是ρ2-4ρcos(θ-$\frac{π}{3}$)-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,且|AB|=3$\sqrt{2}$,求直线的倾斜角α的值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知一个圆柱的底面半径为2,体积为16π,则该圆柱的母线长为4,表面积为24π.

查看答案和解析>>

科目: 来源: 题型:选择题

20.某三棱锥的三视图如图所示,则该三棱锥的表面积是(  )
A.2+2$\sqrt{2}$B.2+$\sqrt{2}$C.4+2$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

19.若直线(1+a)x+y+1=0与直线2x+ay+2=0平行,则a的值为1或-2.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知$\overrightarrow{a}$=(1,-3,1),$\overrightarrow{b}$=(-1,1,-3),则|$\overrightarrow{a}$-$\overrightarrow{b}$|=6.

查看答案和解析>>

科目: 来源: 题型:选择题

17.从点P(2,-1)向圆x2+y2-2mx-2y+m2=0作切线,当切线长最短时m的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图,在正方体ABCD-A1B1C1D1中,点M,N分别是面对角线A1B与B1D1的中点,若$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow{b}$,$\overrightarrow{D{D}_{1}}$=$\overrightarrow{c}$,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}$($\overrightarrow{c}$+$\overrightarrow{b}$-$\overrightarrow{a}$)B.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)C.$\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{c}$)D.$\frac{1}{2}$($\overrightarrow{c}$-$\overrightarrow{a}$)

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知平面α和直线a,b,若a∥α,则“b⊥a”是“b⊥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

14.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,那么他将获得的最大利润是(  )
A.40万元B.60万元C.120万元D.140万元

查看答案和解析>>

科目: 来源: 题型:解答题

13.在直角坐标系中,曲线C的参数方程为,$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(ϕ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为$(\sqrt{3},\frac{π}{2})$.
(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;
(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案