相关习题
 0  226400  226408  226414  226418  226424  226426  226430  226436  226438  226444  226450  226454  226456  226460  226466  226468  226474  226478  226480  226484  226486  226490  226492  226494  226495  226496  226498  226499  226500  226502  226504  226508  226510  226514  226516  226520  226526  226528  226534  226538  226540  226544  226550  226556  226558  226564  226568  226570  226576  226580  226586  226594  266669 

科目: 来源: 题型:选择题

2.下列参数方程(t为参数)与普通方程x2-y=0表示同一曲线的方程是(  )
A.$\left\{\begin{array}{l}x=tant\\ y=\frac{1+cos2t}{1-cos2t}\end{array}$B.$\left\{\begin{array}{l}x=tant\\ y=\frac{1-cos2t}{1+cos2t}\end{array}$
C.$\left\{\begin{array}{l}{x=|t|}\\{y={t}^{2}}\end{array}\right.$D.$\left\{\begin{array}{l}{x=cost}\\{y=co{s}_{\;}^{2}t}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)对任意实数x,都有f(x)≥x,且当x∈[1,3)时,有$f(x)≤\frac{1}{8}{(x+2)^2}$成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
(3)在题(2)的条件下设g(x)=f(x)-$\frac{mx}{2}$,x∈[0,+∞),若g(x)图象上的点都位于直线y=$\frac{1}{4}$的上方,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知:△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,沿DE将△ADE折起,使A到A′的位置,M是A′B的中点,求证:ME∥平面A′CD.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知{an}是等比数列,{bn}是首项为1,公差d大于零的等差数列,且满足a1b1=3,a2b2=27,a3b3=135.
(1)求数列{an},{bn}的通项公式;
(2)求a1b1+a2b2+…+anbn

查看答案和解析>>

科目: 来源: 题型:填空题

18.tanα=$\sqrt{5}$,α∈(π,$\frac{3π}{2}$),则cosα-sinα=$\frac{\sqrt{30}-\sqrt{6}}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数y=1-cos2x的定义域是(  )
A.(-∞,0]B.[0,+∞)C.[-1,1]D.(-∞,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=60°且$\frac{c}{b}$=$\frac{1}{2}$+$\sqrt{3}$,则tanB=$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.定义在R上的函数f(x)、g(x)满足:对任意的实数x都有f(x)=f(|x|),g(-x)+g(x)=0,当x>0时.f′(x)>0,g′(x)<0,则当x<0时,有(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)<0D.f′(x)<0,g′(x)>0

查看答案和解析>>

科目: 来源: 题型:解答题

14.求下列函数的导函数:
(1)y=e-x+2(2x+1)5
(2)y=cos(3x一1)-ln(-2x-1);
(3)y=$\frac{\sqrt{2x-1}}{x}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设集合S?N*,S≠∅,且满足下面两个条件:
①1∉S;②若x∈S,则2+$\frac{12}{x-2}$∈S.
(1)S能否为单元素集合,为什么?
(2)求出只含有两个元素的集合S;
(3)满足题设条件的集合S共有几个,为什么,能否列出来?

查看答案和解析>>

同步练习册答案