相关习题
 0  226406  226414  226420  226424  226430  226432  226436  226442  226444  226450  226456  226460  226462  226466  226472  226474  226480  226484  226486  226490  226492  226496  226498  226500  226501  226502  226504  226505  226506  226508  226510  226514  226516  226520  226522  226526  226532  226534  226540  226544  226546  226550  226556  226562  226564  226570  226574  226576  226582  226586  226592  226600  266669 

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其右焦点F(1,0),离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线x-y+m=0与椭圆C交于不同的两点A,B,且线段AB的中点不在圆x2+y2=$\frac{5}{9}$内,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数$f(x)={log_{\frac{1}{2}}}(3+x)+{log_{\frac{1}{2}}}(3-x)$.
(Ⅰ) 求f(1)的值;
(Ⅱ) 判断函数f(x)的奇偶性,并加以证明;
(Ⅲ)若f(2x)>0,求实数x的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

2.抛物线y2=2x上两点A,B,已知AB的中点在直线x=2上,F为抛物线焦点,则|AF|+|BF|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,圆x2+y2=8内有一点P(-1,2),AB为过点P的弦.
(1)当弦AB的倾斜角为135°时,求AB所在的直线方程及|AB|;
(2)当弦AB被点P平分时,写出直线AB的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

20.椭圆C的对称中心是原点,对称轴是坐标轴,离心率与双曲线${x^2}-\frac{y^2}{3}=1$离心率互为倒数,且过$({\sqrt{3},-\frac{{\sqrt{3}}}{2}})$点,设E、F分别为椭圆的左右焦点.
(Ⅰ)求出椭圆方程;
(Ⅱ)一条纵截距为2的直线l1与椭圆C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(Ⅲ)直线l2:x=ty+1与曲线C交与A、B两点,试问:当t变化时,是否存在一条直线l2,使△ABE的面积为$2\sqrt{3}$?若存在,求出直线l2的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知两点$A(\sqrt{3},0),C(-\sqrt{3},0)$,若一动点Q在运动过程中总满足|AQ|+|CQ|=4,O为坐标原点.
(1)当点P在圆上运动时,求点Q的轨迹E的方程.
(2)设过点B(0,-2)的直线与E交于M,N两点,当△OMN的面积为1时,求此直线的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

18.若tan α<0,则(  )
A.sin α<0B.cos α<0C.sin α•cosα<0D.sin α-cos α<0

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知抛物线C:x2=4y的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的一个交点,若$\overrightarrow{PF}=4\overrightarrow{QF}$,则|QF|=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.3D.6

查看答案和解析>>

科目: 来源: 题型:解答题

16.设命题p:x2-4ax+3a2<0(其中a>0,x∈R),命题q:-x2+5x-6≥0,x∈R.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})过点({2,\sqrt{2}})$,其焦点在⊙O:x2+y2=4上,A,B是椭圆的左右顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)M,N分别是椭圆C和⊙O上的动点(M,N不在y轴同侧),且直线MN与y轴垂直,直线AM,BM分别与y轴交于点P,Q,求证:PN⊥QN.

查看答案和解析>>

同步练习册答案