相关习题
 0  226411  226419  226425  226429  226435  226437  226441  226447  226449  226455  226461  226465  226467  226471  226477  226479  226485  226489  226491  226495  226497  226501  226503  226505  226506  226507  226509  226510  226511  226513  226515  226519  226521  226525  226527  226531  226537  226539  226545  226549  226551  226555  226561  226567  226569  226575  226579  226581  226587  226591  226597  226605  266669 

科目: 来源: 题型:选择题

14.将函数y=sinx,x∈R的图象上所有点的横坐标缩短为原来的一半,纵坐标不变,所得图象对应的函数解析式为(  )
A.y=sin$\frac{1}{2}x$,x∈RB.y=sin2x,x∈RC.y=$\frac{1}{2}$sinx,x∈RD.y=2sinx,x∈R

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点A(0,$\sqrt{3}$)和点P都在椭圆C1上,椭圆C2方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=4.
(1)求椭圆C1的方程;
(2)过P作椭圆C1的切线l交椭圆C2于M,N两点,过P作射线PO交椭圆C2于Q点,设$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$;
(i)求λ的值;
(ii)求证:△QMN的面积为定值,并求出这个定值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且短轴长为2,O为坐标原点.
(1)求椭圆的标准方程;
(2)设直线l:y=kx+$\sqrt{2}$与椭圆交于A、B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{2}{3}$,求k的值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.若角α终边经过点P(-3a,5a)(a≠0),则sinα的值为±$\frac{5\sqrt{34}}{34}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.以下命题:
①若x≠1或y≠2,则x+y≠3;
②若空间向量$\overrightarrow{OA}$,$\overrightarrow{OB}$与空间中任一向量都不能组成空间的一组基底,则$\overrightarrow{OA}$与$\overrightarrow{OB}$共线;
③命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”;
④若A、B为两个定点,K为正常数,若|PA|+|PB|=K,则动点P的轨迹是椭圆;
⑤已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.
其中真命题有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

9.对称轴为坐标轴的椭圆与的焦点F1(-$\sqrt{3}$,0),F2( $\sqrt{3}$,0),P为椭圆上任意一点,满足|PF1|+|PF2|=4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设不过原点O的直线l:y=kx+$\frac{1}{2}$与椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,O到直线PQ的距离为$\frac{1}{\sqrt{5}}$,求S△OPQ的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

8.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A为长轴的一个顶点,B为短轴的一个顶点,F为右焦点,且AB⊥BF,则椭圆M的离心率e为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知圆台的上、下底面半径分别是1、2,且侧面面积等于两底面积之和,则圆台的体积等于$\frac{28π}{9}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设O为△ABC的外心,且满足$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC.}$则∠ACB=120°.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知递增的等差数列{an}中,a2、a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Sn,且Sn=1-$\frac{1}{2}{b_n}({n∈{N^*}})$.
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,数列{cn}的前n项和为Tn.求证:Tn<2.

查看答案和解析>>

同步练习册答案