相关习题
 0  226451  226459  226465  226469  226475  226477  226481  226487  226489  226495  226501  226505  226507  226511  226517  226519  226525  226529  226531  226535  226537  226541  226543  226545  226546  226547  226549  226550  226551  226553  226555  226559  226561  226565  226567  226571  226577  226579  226585  226589  226591  226595  226601  226607  226609  226615  226619  226621  226627  226631  226637  226645  266669 

科目: 来源: 题型:填空题

9.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,F1,F2是椭圆的两个焦点,则|F1F2|=2$\sqrt{7}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,O是正方形AA1B1B的中心,AB=2$\sqrt{2}$,C1O⊥平面AA1B1B,且C1O=2.
(1)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段AM的长;
(2)求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,且PA=AD,M为AB的中点.
(1)在侧棱PC上是否存在一点N,使MN∥平面PAD?证明你的结论;
(2)求证:平面PMC⊥平面PCD;
(3)当$\frac{AB}{AD}$取何值,平面PAD与平面PMC所成的锐二面角为45°?

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(1)证明:A1C⊥平面BED
(2)求二面角A1-DE-B的大小的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图甲,在边长为4的等边△ABC中,点E,F分别为AB,AC上一点,且EF∥BC,EF=2a,沿EF将△AEF折起,使得平面AEF⊥平面EFCB,形成一个如图乙所示的四棱锥,设O为EF的中点.
(1)求证:AO⊥BE;
(2)当a为何值时,四棱锥A-EFCB的体积最大,并求出最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

4.一个棱长为12的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体的体积最大值是(  )
A.16$\sqrt{2}$B.6$\sqrt{2}$C.12$\sqrt{2}$D.32$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,已知cos(B-C)=1-cosA,且b,a,c成等比数列,求:
(1)sinB•sinC的值;
(2)A;
(3)tanB+tanC的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.如图所示的流程图中,输出S的值是$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.在如图所示的几何体ABD-A1B1C1D1中,底面A1B1C1D1是矩形,AA1⊥平面A1B1C1D1,且AA1平行且等于BB1平行且等于DD1,若∠DC1D1=-$\frac{π}{4}$,∠BC1B1=$\frac{π}{3}$,BC1=2,则该几何体的体积是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{8}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知如图几何体A1C1E1-ABCDEF底面是边长为2的六变形,AA1,CC1,EE1长度为2且都垂直与底面,
(1)求证:平面A1C1E1∥平面ABCDEF
(2)求几何体A1C1E1-ABCDEF的体积.

查看答案和解析>>

同步练习册答案