相关习题
 0  226467  226475  226481  226485  226491  226493  226497  226503  226505  226511  226517  226521  226523  226527  226533  226535  226541  226545  226547  226551  226553  226557  226559  226561  226562  226563  226565  226566  226567  226569  226571  226575  226577  226581  226583  226587  226593  226595  226601  226605  226607  226611  226617  226623  226625  226631  226635  226637  226643  226647  226653  226661  266669 

科目: 来源: 题型:解答题

9.如图,ABCD是梯形,AB∥CD,∠BAD=90°,PA⊥面ABCD,且AB=1,AD=1,CD=2,PA=3,E为PD的中点.
(1)求作:AE∥平面PBC;
(2)求面PAD与面PBC所成的角.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C菱形,∠CBB1=60°,AB⊥平面BB1C1C,且D是BC的中点.
(1)求证:A1B∥平面ADC1
(2)若AB=2,求三棱锥B1-ABC体积.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在平面直角坐标系xOy中,A点的直角坐标为$(\sqrt{3}+2cosα,1+2sinα)$(α为参数).在以原点O为极点,x轴正半轴为极轴的极坐标中,直线的极坐标方程为$2ρcos(θ+\frac{π}{6})=m$.(m为实数).
(1)试求出动点A的轨迹方程(用普通方程表示)
(2)设A点对应的轨迹为曲线C,若曲线C上存在四个点到直线的距离为1,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

6.如图,在正方体ABCD-A1B1C1D1中,M为BB1的中点,则二面角M-CD1-A的余弦值为(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最大值,则下列结论正确的是(  )
A.f(2)<f(-2)<f(0)B.f(0)<f(-2)<f(2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)

查看答案和解析>>

科目: 来源: 题型:选择题

4.函数y=sin2x+2sinxcosx+3cos2x-2,x∈R,下列判断正确的是(  )
A.最大值为2,周期是πB.最大值为2,周期是2π
C.最大值为$\sqrt{2}$,周期是πD.最大值为$\sqrt{2}$,周期是2π

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A.且B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}.
(Ⅰ)求A和(∁UA)∩B;
(Ⅱ)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在多面体EF-ABCD中,四边形ABCD,ABEF均为直角梯形,∠ABE=∠ABC=$\frac{π}{2}$,四边形DCEF为平行四边形,平面DCEF⊥平面ABCD.
(Ⅰ)求证:DF⊥平面ABCD;
(Ⅱ)若BC=CD=CE=$\frac{1}{2}$AB,求直线BF与平面ADF所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.物理学家和数学家牛顿曾提出了物体在常温环境下温度变化的冷却模型,如果物体的初始温度为θ1℃,空气温度为θ0℃,则tmin后物体的温度f(t)满足:f(t)=θ0+(θ10)•e-kt(其中k为正的常数,e=2.71828…为自然对数的底数),现有65℃的物体,放在15℃的空气中冷却,5min以后物体的温度是45℃.
(Ⅰ)求k的值;
(Ⅱ)求从开始冷却,经过多少时间物体的温度是25.8℃?
(Ⅲ)运用上面的数据,作出函数f(t)的图象的草图.

查看答案和解析>>

科目: 来源: 题型:解答题

20.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,
(Ⅰ)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(Ⅱ)用样本估计总体,如果90%的居民每月的用水量不超出标准,则月均用水量的最低标准定为多少吨,并说明理由(精确到0.01);
(Ⅲ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(Ⅱ)中最低标准的人数为X,求X的分布列和均值.

查看答案和解析>>

同步练习册答案