相关习题
 0  226486  226494  226500  226504  226510  226512  226516  226522  226524  226530  226536  226540  226542  226546  226552  226554  226560  226564  226566  226570  226572  226576  226578  226580  226581  226582  226584  226585  226586  226588  226590  226594  226596  226600  226602  226606  226612  226614  226620  226624  226626  226630  226636  226642  226644  226650  226654  226656  226662  226666  226672  226680  266669 

科目: 来源: 题型:解答题

6.已知椭圆线$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,如图所示,A(a,0),B(0,-b)原点到直线AB的距离为$\frac{4}{\sqrt{5}}$.
(1)求椭圆的标准方程;
(2)若直线l:y=kx+1(k≠0)交椭圆于不同的两点E,F,且E,F都在以B为圆心的圆周上,求k.

查看答案和解析>>

科目: 来源: 题型:解答题

5.设x=x1和x=x2是函数f(x)=1nx+$\frac{1}{2}$x2-(a+1)x的两个极值点,其中x1<x2,a∈R.
(1)求f(x1)+f(x2)的取值范围;
(2)若a≥$\sqrt{e}$+$\frac{1}{\sqrt{e}}$-1,求f(x2)-f(x1)最大值(注:e是自然对数的底数).

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆在x轴两焦点为F1,F2,且|F1F2|=10,P为椭圆上一点,∠F1PF2=$\frac{2π}{3}$,△F1PF2的面积为6$\sqrt{3}$,求椭圆的标准方程?

查看答案和解析>>

科目: 来源: 题型:填空题

3.若函数y=ex与函数y=$\frac{1}{2}{x^2}$+mx+1的图象有三个不同交点,则实数m的取值范围为(1,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

2.若F(c,0)为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点,椭圆C与直线$\frac{x}{a}+\frac{y}{b}=1$交于A,B两点,线段AB的中点在直线x=c上,则椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知过点($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点与两焦点构成直角三角形.
(1)求椭圆C的方程;
(2)若对椭圆C右焦点的直线与椭圆C交于两点D、E,且椭圆C上样在一点G,使得$\overrightarrow{OD}$=$\overrightarrow{EG}$(O为坐标原点),求四边形ODGE的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知集合A={x||x|≤1},B={x|x2-ax≤0},若A∩B=B.则实数a的取值范围是[-1,1].

查看答案和解析>>

科目: 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别是a,b,c,已知(2c-a)cosB=bcosA,ac=b,则△ABC面积的最小值为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

11.若直线l:y=kx-1与曲线C:y=-$\sqrt{1-{x}^{2}}$+1有2个不同的公共点,则直线l的斜率的取值范围为(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(-∞,-$\sqrt{3}$)D.[-2,$-\sqrt{3}$)∪($\sqrt{3}$,2]

查看答案和解析>>

科目: 来源: 题型:填空题

10.函数y=$\frac{{x}^{2}-2x+5}{x-1}$(x≥3)的值域为[4,+∞).

查看答案和解析>>

同步练习册答案