相关习题
 0  226495  226503  226509  226513  226519  226521  226525  226531  226533  226539  226545  226549  226551  226555  226561  226563  226569  226573  226575  226579  226581  226585  226587  226589  226590  226591  226593  226594  226595  226597  226599  226603  226605  226609  226611  226615  226621  226623  226629  226633  226635  226639  226645  226651  226653  226659  226663  226665  226671  226675  226681  226689  266669 

科目: 来源: 题型:选择题

16.“x=1”是“x2+2x-3=0”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知函数y=f(x)在x=x0处的导数为11,则
$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-11;
$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{2({x}_{0}-x)}$=-$\frac{11}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.不等式|x+5|>x+5的解集为(-∞,-5).

查看答案和解析>>

科目: 来源: 题型:选择题

13.不等式|x+5|>x+5的解集为(  )
A.(0,+∞)B.(-∞,0)C.(-∞,-5)D.(-∞,-5]

查看答案和解析>>

科目: 来源: 题型:解答题

12.曲线C上任一点到点F1(-4,0),F2(4,0)的距离之和为10.曲线C的左顶点为A,点P在曲线C上,且PA⊥PF2
(1)求曲线C的方程;
(2)求点P的坐标;
(3)在y轴上求一点M,使M到曲线C上点的距离最大值为4$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在△ABC中,AB=3,AC=4,N是AB的中点,M是边AC(含端点)上的动点.
(1)若∠BAC=60°,求|$\overrightarrow{BC}$|的值;
(2)若$\overrightarrow{BM}$⊥$\overrightarrow{CN}$,求cosA的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设函数f(x)=$\frac{a{x}^{2}+4}{x+b}$是奇函数,且f(1)=5.
(1)求a和b的值;
(2)求证:当x∈(0,+∞)时,f(x)≥4.

查看答案和解析>>

科目: 来源: 题型:解答题

9.设α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3\sqrt{10}}{10}$,tan(α+β)=$\frac{2}{5}$.
(1)求sin(2α+$\frac{π}{6}$)的值;
(2)求tan(2β-$\frac{π}{3}$)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知A={x|-x2+3x-2>0},B={x|x2-(a+1)x-a≤0}.
(1)化简集合B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.某同学研究相关资料,得到两种求sin18°的方法,两种方法的思路如下:
思路一:作顶角A为36°的等腰三角形ABC,底角B的平分线交腰AC于D;
思路二:由二倍角公式cos2α=2cos2α-1,可知cos2α可表示为cosα的二次多项式,推测cos3α也可以用cosα的三次多项式表示,再结合cos54°=sin36°.
请你按某一种思路:计算得sin18°的精确值为$\frac{\sqrt{5}-1}{4}$.

查看答案和解析>>

同步练习册答案