相关习题
 0  226540  226548  226554  226558  226564  226566  226570  226576  226578  226584  226590  226594  226596  226600  226606  226608  226614  226618  226620  226624  226626  226630  226632  226634  226635  226636  226638  226639  226640  226642  226644  226648  226650  226654  226656  226660  226666  226668  226674  226678  226680  226684  226690  226696  226698  226704  226708  226710  226716  226720  226726  226734  266669 

科目: 来源: 题型:解答题

8.已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,若Γ与圆E:${({x-\frac{3}{2}})^2}+{y^2}$=1相交于M,N两点,且圆E在Γ内的弧长为$\frac{2}{3}$π.
(Ⅰ)求a,b的值;
(Ⅱ)过Γ的中心作两条直线AC,BD交Γ于A,C和B,D四点,设直线AC的斜率为k1,BD的斜率为k2,且k1k2=$\frac{1}{4}$
(1)求直线AB的斜率;
(2)求四边形ABCD面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.若口井勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值与(I)中b,a的值差不超过10%,则使用位置最迫近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)设口井出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知各项均为正数的数列{an}的前n项和为Sn,且满足$4{S_n}={({{a_n}+1})^2}({n∈{N^*}})$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设$f(n)=\left\{\begin{array}{l}{a_n},n=2k-1\\ f({\frac{n}{2}}),n=2k.\end{array}\right.$(其中n,k∈N*),${b_n}=f({{2^n}+4})$,求数列{bn}的前n项和Tn(n≥3).

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数$f(x)=sin({ωx-\frac{π}{6}})[{\sqrt{3}cos({ωx-\frac{π}{6}})-sin({ωx-\frac{π}{6}})}]+\frac{1}{2}({ω>0}),y$=f(x)的图象与直线y=1的两个相邻交点的距离为π.
(I)求ω的值;
(Ⅱ)函数f(x)的图象先向左平移$\frac{π}{6}$个单位,再将所有点的横坐标扩大到原来的二倍,得到g(x)的图象,试求函数y=g(x)(x∈[0,π])的最大值,最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

4.三棱锥的三视图中俯视图是等腰直角三角形,三棱锥的外接球的体积记为V1,俯视图绕斜边所在直线旋转一周形成的几何体的体积记为V2,则$\frac{V_1}{V_2}$=(  )
A.$8\sqrt{2}$B.$4\sqrt{2}$C.12D.$5\sqrt{10}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.设函数f(x)=lg[(2x-3)(x-1)]的定义域为集合A,函数$g(x)=\sqrt{-{x^2}+4ax-3{a^2}}$的定义域为集合B(其中a∈R,且a>0).
(1)当a=1时求集合A∩B;
(2)当A∩B=B时,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(1)求f(x)的单调区间.
(2)若关于x的方程2f(x)-m+1=0在区间[-$\frac{π}{3}$,$\frac{π}{4}$]上有两个相异的实根,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,点P(-$\sqrt{2}$,1)在该椭圆上.
(1)求椭圆C的方程;
(2)若点A,B是椭圆C上关于直线y=kx+1对称的两点,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.过点M(2,-1)作斜率为$\frac{1}{2}$的直线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两个不同点,若M是AB的中点,则该椭圆的离心率e=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.若方程$\frac{{x}^{2}}{3-m}$+$\frac{{y}^{2}}{m-1}$=1表示焦点在y轴上的椭圆,则实数m的取值范围为(  )
A.(-∞,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

同步练习册答案