相关习题
 0  226606  226614  226620  226624  226630  226632  226636  226642  226644  226650  226656  226660  226662  226666  226672  226674  226680  226684  226686  226690  226692  226696  226698  226700  226701  226702  226704  226705  226706  226708  226710  226714  226716  226720  226722  226726  226732  226734  226740  226744  226746  226750  226756  226762  226764  226770  226774  226776  226782  226786  226792  226800  266669 

科目: 来源: 题型:解答题

19.已知函数f(x)=-x3+x2+bx,g(x)=alnx.
(1)若f(x)在x=$\frac{2}{3}$处取得极值,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=$\left\{\begin{array}{l}{f(x),x<1}\\{g(x),x≥1}\end{array}\right.$对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.设计一个程序,输入一个三位自然数,把这个数的百位数字与个位数字对调,输出对调后的数.(用“\”表示m除以n的商的整数部分,如32\10=3)

查看答案和解析>>

科目: 来源: 题型:填空题

17.设某银行的总存款与银行付给存户的利率的平方成正比,若银行以10%的年利率把总存款的90%贷出,同时能获得最大利润,需要支付给存户的年利率应为6%.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数f(x)=-$\sqrt{2}$${x}^{\frac{3}{4}}$+alnx-4(a∈R),函数f(x)的图象在点P(1,f(1))处的切线的倾斜角为θ,若sinθ=$\frac{1}{3}$,则a=$\sqrt{2}$或$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.设f(x)=$\frac{\sqrt{{x}^{4}-3{x}^{2}+9}-\sqrt{{x}^{4}-4{x}^{2}+9}}{x}$(x>0)
(1)将f(x)化成$\frac{1}{\sqrt{{g}^{2}(x)+a}+\sqrt{{g}^{2}(x)+b}}$(a,b是不同的整数)的形式;
(2)求f(x)的最大值及相应的x值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.王妈妈开了一家小型餐馆,为了节约服务生收费时间,她购进红、黄、蓝、绿四种颜色的盘子,用这几种颜色的盘子分别盛5元、8元、10元和12元的食品,这样结账的时候,只要数一下盘子就可以,请利用赋值语句描述用餐记费的算法.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知直线y=kx是曲线y=3x的切线,则k的值是(  )
A.$\frac{1}{3}$B.eln3C.log3eD.e

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=$\frac{ax}{{x}^{2}+b}$(a>0,b>1),满足:f(1)=1,且f(x)在R上有最大值$\frac{3\sqrt{2}}{4}$.
(I)求f(x)的解析式;
(Ⅱ)当x∈[1,2]时,不等式f(x)≤$\frac{3m}{({x}^{2}+2)|x-m|}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

11.设函数f(x)=a1nx+$\frac{1-a}{2}$x2-x(a∈R且a≠1),若?x0∈[1,+∞),使得f(x0)<$\frac{a}{a-1}$,则a的取值范围为(  )
A.(-$\sqrt{2}-$1,$\sqrt{2}-1$)B.(-$\sqrt{2}-1$,1)C.(1,+∞)D.(-$\sqrt{2}-1$,$\sqrt{2}-1$)∪(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

10.某几何体的三视图如图所示.则其体积积为(  )
A.B.$\frac{17}{2}π$C.D.$\frac{15}{2}π$

查看答案和解析>>

同步练习册答案