相关习题
 0  226616  226624  226630  226634  226640  226642  226646  226652  226654  226660  226666  226670  226672  226676  226682  226684  226690  226694  226696  226700  226702  226706  226708  226710  226711  226712  226714  226715  226716  226718  226720  226724  226726  226730  226732  226736  226742  226744  226750  226754  226756  226760  226766  226772  226774  226780  226784  226786  226792  226796  226802  226810  266669 

科目: 来源: 题型:选择题

10.已知正三棱椎的棱长为3,则它的内切球的体积为(  )
A.$\frac{{\sqrt{6}}}{8}π$B.$\frac{{\sqrt{6}}}{4}π$C.$\frac{{\sqrt{3}}}{4}π$D.$\frac{{\sqrt{3}}}{12}π$

查看答案和解析>>

科目: 来源: 题型:选择题

9.若x,y∈R,则下列命题中,甲是乙的充分不必要条件的是(  )
A.甲:xy=0  乙:x2+y2=0B.甲:xy=0  乙:|x|+|y|=|x+y|
C.甲:xy=0  乙:x,y至少有一个为零D.甲:x<y   乙:$\frac{x}{y}<1$

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-1,0)$,则$\overrightarrow a•\overrightarrow b$=(  )
A.3B.0C.-1D.2

查看答案和解析>>

科目: 来源: 题型:选择题

7.为了得到函数$y=sin(3x-\frac{π}{3})$的图象,只需把函数y=sin3x的图象(  )
A.向右平移$\frac{π}{9}$个单位长度B.向左平移$\frac{π}{9}$个单位长度
C.向右平移$\frac{π}{3}$个单位长度D.向左平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目: 来源: 题型:填空题

6.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的左焦点为F1,P为椭圆上的动点,M是圆${x^2}+{({y-2\sqrt{5}})^2}=1$上的动点,则|PM|+|PF1|的最大值是17.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知F1(-c,0),F2(c,0)为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,P在椭圆上,且△PF1F2的面积为$\frac{{\sqrt{2}}}{2}{b^2}$,则cos∠F1PF2=$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知椭圆E的中心为坐标原点,长轴的长为8,E的右焦点与抛物线C:y2=8x的焦点重合,抛物线C的准线与椭圆E交于A,B两点,则|AB|=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知,如图,等腰直角三角形ABC的直角边AC=BC=2,沿其中位线DE将平面ADE折起,使平面ADE⊥平面BCDE,得到四棱锥A-BCDE,设CD,BE,AE,AD的中点分别为M,N,P,Q.

(1)求证:M,N,P,Q四点共面;
(2)求证:平面ABC⊥平面ACD;
(3)求四棱锥A-BCDE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的长轴长为4,离心率为$\frac{{\sqrt{6}}}{3}$.
(I)求椭圆C的方程;
(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C:x2+3y2=4.
(I)求椭圆的离心率;
(Ⅱ)试判断命题“若过点M(1,0)的动直线l交椭圆于A,B两点,则在直角坐标平面上存在定点N,使得以线段AB为直径的圆恒过点N”的真假,若为真命题,求出定点N的坐标;若为假命题,请说明理由.

查看答案和解析>>

同步练习册答案