相关习题
 0  226669  226677  226683  226687  226693  226695  226699  226705  226707  226713  226719  226723  226725  226729  226735  226737  226743  226747  226749  226753  226755  226759  226761  226763  226764  226765  226767  226768  226769  226771  226773  226777  226779  226783  226785  226789  226795  226797  226803  226807  226809  226813  226819  226825  226827  226833  226837  226839  226845  226849  226855  226863  266669 

科目: 来源: 题型:选择题

3.实半轴长等于$2\sqrt{5}$,并且经过点B(5,-2)的双曲线的标准方程是(  )
A.$\frac{x^2}{20}-\frac{y^2}{16}=1$或$\frac{x^2}{16}-\frac{y^2}{20}=1$B.$\frac{x^2}{5}-\frac{y^2}{16}=1$
C.$\frac{x^2}{20}-\frac{y^2}{16}=1$D.$\frac{x^2}{16}-\frac{y^2}{20}=1$

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知两个函数f1(x)=ln(|x-a|+2),f2(x)=ln(|x-2a+1|+1),a∈R.
(1)若a=0,求使得f1(x)=f2(x)的x的值;
(2)若|f1(x)-f2(x)|=f1(x)-f2(x)对于任意的实数x∈R恒成立,求实数a的取值范围;
(3)求函数F(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$-$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=$\frac{2\sqrt{2}}{\sqrt{5-3cos2θ}}$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)曲线C1与曲线C2交于A,B两点,C1与x轴交于点P,求|PA|•|PB|的值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知O为△ABC所在平面内一点,且$\overrightarrow{OA}$2+$\overrightarrow{BC}$2=$\overrightarrow{OB}$2+$\overrightarrow{CA}$2=$\overrightarrow{OC}$2+$\overrightarrow{AB}$2,则O一定为△ABC的垂心.

查看答案和解析>>

科目: 来源: 题型:解答题

17.放射性物质以一定速度衰变,其速度与当时物质的质量成正比,如果某种放射性物质为的质量为Q0,在时间h中衰变到$\frac{{Q}_{0}}{2}$,在时间2h中将衰变到剩下的一半,即$\frac{{Q}_{0}}{4}$,那么h称为该物质的半衰期,镭226的半衰期h=1620年.试问:10g镭226经过810年后还剩多少?

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),$\overrightarrow{c}$=(-sin$\frac{x}{2}$,cos$\frac{x}{2}$),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|,$\overrightarrow{a}$•$\overrightarrow{b}$及$\overrightarrow{a}$•$\overrightarrow{c}$;
(2)求函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{c}$+|$\overrightarrow{a}$+$\overrightarrow{b}$|的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知sinα+cosα=$\frac{\sqrt{2}}{3}$,α∈(0,π).
(1)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值;
(2)若cosβ+sinβ=-$\frac{\sqrt{2}}{3}$,β∈(0,π),求角α+β的值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.解下列不等式:
(1)x2-2x-8≥0;
(2)x2-18x+32<0;
(3)x2+3x-54≤0;
(4)x2-4x+5>0;
(5)3x2+2x+1<0.

查看答案和解析>>

科目: 来源: 题型:填空题

13.若函数y=ln(a+e2x)-x为偶函数,则常数a=1.

查看答案和解析>>

科目: 来源: 题型:选择题

12.若x,y满足约束条件$\left\{\begin{array}{l}{\sqrt{\frac{{x}^{2}}{9}}+\sqrt{\frac{{y}^{2}}{4}}≤1}\\{|x|≤2}\end{array}\right.$则目标函数z=3x+y的最大值为(  )
A.$\frac{16}{3}$B.6C.$\frac{20}{3}$D.8

查看答案和解析>>

同步练习册答案