相关习题
 0  226675  226683  226689  226693  226699  226701  226705  226711  226713  226719  226725  226729  226731  226735  226741  226743  226749  226753  226755  226759  226761  226765  226767  226769  226770  226771  226773  226774  226775  226777  226779  226783  226785  226789  226791  226795  226801  226803  226809  226813  226815  226819  226825  226831  226833  226839  226843  226845  226851  226855  226861  226869  266669 

科目: 来源: 题型:填空题

3.一个扇形的面积是1cm2,它的周长为4cm,则其中心角弧度数为2.

查看答案和解析>>

科目: 来源: 题型:填空题

2.方程$sinx+cosx=\frac{{\sqrt{2}}}{2}$解集是{x|x=kπ+(-1)k$\frac{π}{6}$-$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知数列{an}的前n项和${S_n}=2{a_n}-1,n∈{N^*}$,则{an}的通项公式为an=2n-1

查看答案和解析>>

科目: 来源: 题型:选择题

20.设函数$f(x)=cos({πx-π})+1,\;\;x∈({\frac{1}{2},\frac{3}{2}})$,若关于x的方程2[f(x)]2-(2a+3)f(x)+3a=0有四个不同的实数解,则满足题意的实数a的取值范围是(  )
A.(0,1)B.$({0,\frac{3}{2}})$C.(1,2)D.$({1,\frac{3}{2}})∪({\frac{3}{2},2})$

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数y=f(x)是R上的奇函数,当x≤0时,$f(x)=\frac{3^x}{{{9^x}+1}}-\frac{1}{2}$,
(1)求函数y=f(x)在R上的解析式;
(2)判断并证明y=f(x)在(-∞,0)上的单调性;
(3)求不等式 $f(x)>\frac{1}{3}的解集$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.若一段圆弧的长度等于该圆内接正三角形的边长,则这段弧所对圆心角弧度为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

17.不等式x2-3x-18≤0的解集为[-3,6].

查看答案和解析>>

科目: 来源: 题型:填空题

16.若角45°的终边上有一点(4,a),则a的值是4.

查看答案和解析>>

科目: 来源: 题型:解答题

15.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,495],(495,500],…(510,515],由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量不超过500克的产品数量;
(2)在上述抽取的40件产品中任取2件,设Y为重量不超过500克的产品数量,求Y的分布列及期望;
(3)从流水线上任取5件产品,求恰有2件产品合格的重量不超过500克的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数$f(x)=sinx•cos(x-\frac{π}{6})+{cos^2}x-\frac{1}{2}$
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)若$f({x_0})=\frac{11}{20},{x_0}∈[\frac{π}{6},\frac{π}{2}]$,求cos2x0的值;
(3)在△ABC中,角A、B、C的对边分别为a,b,c,若$f(A)=\frac{1}{2},b+c=3$,求a的最小值.

查看答案和解析>>

同步练习册答案