相关习题
 0  226762  226770  226776  226780  226786  226788  226792  226798  226800  226806  226812  226816  226818  226822  226828  226830  226836  226840  226842  226846  226848  226852  226854  226856  226857  226858  226860  226861  226862  226864  226866  226870  226872  226876  226878  226882  226888  226890  226896  226900  226902  226906  226912  226918  226920  226926  226930  226932  226938  226942  226948  226956  266669 

科目: 来源: 题型:解答题

4.如图函数y1=k1x+b的图象与函数y2=$\frac{{k}_{2}}{x}$(x>0)的图象交于A、B两点,与y轴交于c点.已知A点的坐标为(2,1).c点坐标为(0.3).
(1)求函数y1的表达式和B点坐标;
(2)观察图象,比较当x>0时,y1和y2的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,ac=3,且a=3bsinA,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.利用正切函数图象解不等式.
(1)tanx≥-1;
(2)tan2x≤-1;
(3)tanx≥3.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是点F1,F2,上、下顶点分别为A,B,其离心率e=$\frac{1}{2}$,点P为椭圆上的一个动点,当点P与点A重合时,△PF1F2的内切圆面积为$\frac{4π}{3}$.
(I)求a,b的值;
(Ⅱ)当点P是椭圆上异于顶点的任意一点,直线AP,BP分别交x轴于两点M,N,证明:|$\overrightarrow{OM}$|•|$\overrightarrow{ON}$|为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知f(x)=ex-ax.
(1)若对一切x∈R,f(x)≥1恒成立,求实数a的取值集合;
(2)若方程f(x)=a(lnx-x+1)(a>0)有两个不等的实数根,x1,x2(0<x1<x2),求证:$\frac{1}{a}$<x1<1<x2<a.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且满足a1=6,3Sn=an+1+2n+2-10.
(1)求证:数列{$\frac{{a}_{n}}{{2}^{n}}$-1}为等比数列;
(2)若bn=$\frac{{2}^{n}}{a_n}$,数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目: 来源: 题型:解答题

18.过椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1外一点P(4,3)向椭圆C作切线,切点分别为A、B,求直线AB的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知函数ft(x)=(x-t)2-t,t∈R,设a<b,f(x)=$\left\{\begin{array}{l}{{f}_{a}(x),{f}_{a}(x)<{f}_{b}(x)}\\{{f}_{b}(x),{f}_{a}(x)≥{f}_{b}(x)}\end{array}\right.$,若函数y=f(x)+x+a-b有四个零点,则b-a的取值范围为$(2+\sqrt{5},+∞)$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,ABCD为边长为3的正方形,把各边三等分后,共有16个交点,从中选取两个交点作为向量,则与$\overrightarrow{AC}$平行且长度为2$\sqrt{2}$的向量个数有8个.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}满足a1=$\frac{1}{2}$,$\frac{{a}_{n+1}}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=0,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+1}}{{a}_{n}}$-1,数列{bn}的前n项和为Sn,证明Sn<$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案