相关习题
 0  226774  226782  226788  226792  226798  226800  226804  226810  226812  226818  226824  226828  226830  226834  226840  226842  226848  226852  226854  226858  226860  226864  226866  226868  226869  226870  226872  226873  226874  226876  226878  226882  226884  226888  226890  226894  226900  226902  226908  226912  226914  226918  226924  226930  226932  226938  226942  226944  226950  226954  226960  226968  266669 

科目: 来源: 题型:解答题

2.已知函数$f(x)=cos\frac{x}{3}•(sin\frac{x}{3}+\sqrt{3}cos\frac{x}{3})$.
(1)将f(x)写成Asin(ωx+φ)+B($A>0,ω>0,φ∈({-\frac{π}{2},\frac{π}{2}})$)的形式,并求其最小正周期,图象的对称轴方程,写出奇偶性(不要证明);
(2)若$x∈({0,\frac{π}{3}}]$,求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知函数f(x)=x2•sinx,给出下列三个命题:
(1)f(x)是R上的奇函数;
(2)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上单调递增;
(3)对任意的${x_1},{x_2}∈[-\frac{π}{2},\frac{π}{2}]$,都有(x1+x2)[f(x1)+f(x2)]≥0
其中真命题的序号是(1)(2)(3).

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数$f(x)=cos\frac{x}{3}•(sin\frac{x}{3}+\sqrt{3}cos\frac{x}{3})$.
(1)将f(x)写成Asin(ωx+φ)+B($A>0,ω>0,φ∈({-\frac{π}{2},\frac{π}{2}})$)的形式,并写出其最小正周期,图象的对称轴方程,奇偶性(不要证明);
(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

19.己知向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,记.$f(x)=\overrightarrow m.\overrightarrow n$
(1)若$cos({\frac{2π}{3}-x})$=$-\frac{1}{2}$,求$f(x)=\overrightarrow m.\overrightarrow n$的值;
(2)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.(1)已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,求$\frac{cosα+sinα}{cosα-sinα}$的值;
(2)已知β,β均为锐角,且cos(α+β)=$\frac{\sqrt{5}}{5}$,sin(α-β)=$\frac{\sqrt{10}}{10}$,求2β.

查看答案和解析>>

科目: 来源: 题型:填空题

17.一同学在电脑中打出如下若干个圆(图中●表示实心圆,○表示空心圆):○●○○●○○○●○○○○●○○○○○●…若将此若干个圆依次复制得到一系列圆,那么在前2016个圆中有62个实心圆.

查看答案和解析>>

科目: 来源: 题型:填空题

16.函数f(x)=x3-3x-1,若对于区间[-3,4]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是70.

查看答案和解析>>

科目: 来源: 题型:解答题

15.函数$g(θ)={sin^2}θ+mcosθ-2m,θ∈[{0,\frac{π}{2}}]$.
(1)当m=$\sqrt{3}$时,求g(θ)的单调递增区间;
(2)若g(θ)+1<0恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

14.对于任意x,[x]表示不超过x的最大整数,如[1.1]=1,[-2.1]=-3.定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},则A中所有元素的和为58.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知二次方程ax2+bx+c=0的根为2,4且a>0,则ax2+bx+c>0的解集是(  )
A.{x|2<x<4}B.{x|x<2或x>4}C.{x|4<x<2}D.{x|x<4或x>2}

查看答案和解析>>

同步练习册答案