相关习题
 0  226795  226803  226809  226813  226819  226821  226825  226831  226833  226839  226845  226849  226851  226855  226861  226863  226869  226873  226875  226879  226881  226885  226887  226889  226890  226891  226893  226894  226895  226897  226899  226903  226905  226909  226911  226915  226921  226923  226929  226933  226935  226939  226945  226951  226953  226959  226963  226965  226971  226975  226981  226989  266669 

科目: 来源: 题型:选择题

6.下列命题正确的是(  )
A.若p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件
B.若p为:?x∈R,x2+2x≤0则¬p为:?x∈R,x2+2x>0
C.命题p为真命题,命题q为假命题.则命题p∧(¬q),(¬p)∨q都是真命题
D.命题“若¬p,则q”的逆否命题是“若p,则¬q”.

查看答案和解析>>

科目: 来源: 题型:选择题

5.过圆x2+y2=4外一点P作该圆的切线,切点为A、B,若∠APB=60°,则点P的轨迹是(  )
A.直线B.C.椭圆D.抛物线

查看答案和解析>>

科目: 来源: 题型:填空题

4.下列说法正确的是①②(填入你认为所有正确的序号)
①$\frac{5π}{3}$的正弦线与正切线的方向相同;
②若函数f(x)=cosωx(ω>0)在$x∈[-\frac{π}{3},\frac{π}{4}]$上的最大、最小值之和为0,则ω的最小值为3;
③在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,则△ABC是钝角三角形;
④定义在R上的奇函数f(x)满足f(x)=f(x+5),且f(3)=0,则在(0,10)内f(x)至少有7个零点.

查看答案和解析>>

科目: 来源: 题型:选择题

3.在平面直角坐标系xOy中,已知点A(4,3),点B是圆(x+1)2+y2=4上的动点,则线段AB的中点M的轨迹方程是(  )
A.${(x-\frac{3}{2})^2}+{(y-\frac{3}{2})^2}=1$B.${(x-\frac{3}{2})^2}+{(y-\frac{3}{2})^2}=4$C.(x-3)2+(y-3)2=1D.(x-3)2+(y-3)2=2

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知定点A(-3,4),点B是圆O:x2+y2=9上的一个动点,以OA,OB为邻边作平行四边形AOBP,当点B是在圆O上运动时求点P的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:解答题

1.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(Ⅰ)求编号和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试说明理由;
(Ⅲ)如果甲摸出球后不放回,则游戏对谁有利?

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期为π,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)的解析式为(  )
A.g(x)=2sin(2x+$\frac{2π}{3}$)B.g(x)=2sin(2x-$\frac{π}{6}$)C.g(x)=2sin2xD.g(x)=2cos2x

查看答案和解析>>

科目: 来源: 题型:选择题

19.命题“?x∈R,x2≠x”的否定是(  )
A.?x0∈R,x${\;}_{0}^{2}$=x0B.?x∈R,x2=xC.?x0∉R,x${\;}_{0}^{2}$≠x0D.?x∉R,x2≠x

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=ex(e=2.71828…),g(x)为其反函数.
(1)设点P(-1,0),求过点P且与曲线y=f(x)相切的直线方程;
(2)求函数$F(x)=\frac{x}{g(x)}$的单调区间及极值;并比较$\sqrt{2}ln\sqrt{3}$与$\sqrt{3}ln\sqrt{2}$的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在△ABC中,角A,B的对边分别为a,b,向量$\overrightarrow{m}$=(cosA,sinB),$\overrightarrow{n}$=(cosB,sinA).
(1)若acosA=bcosB,求证:$\overrightarrow{m}$∥$\overrightarrow{n}$;
(2)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,a>b,求$tan\frac{A-B}{2}$的值.

查看答案和解析>>

同步练习册答案