相关习题
 0  226851  226859  226865  226869  226875  226877  226881  226887  226889  226895  226901  226905  226907  226911  226917  226919  226925  226929  226931  226935  226937  226941  226943  226945  226946  226947  226949  226950  226951  226953  226955  226959  226961  226965  226967  226971  226977  226979  226985  226989  226991  226995  227001  227007  227009  227015  227019  227021  227027  227031  227037  227045  266669 

科目: 来源: 题型:解答题

18.已知椭圆C的中心在原点,离心率等于$\frac{1}{2}$,它的一个短轴端点点恰好是抛物线$y=\frac{{\sqrt{3}}}{24}{x^2}$的焦点.
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
②当A,B运动时,满足直线PA、PB与X轴始终围成一个等腰三角形,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知过椭圆的右焦点且斜率为1的直线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两点,若椭圆离心率为$\frac{1}{2}$,短轴长为2$\sqrt{3}$.
(1)求椭圆方程;
(2)求线段AB的长.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点,P是椭圆上一点(异于左、右顶点),点E是△PF1F2的内心,若3|PE|2=|PF1|•|PF2|,则椭圆的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知实数a,b满足log2a+log2b=-2,则a+b的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

科目: 来源: 题型:选择题

14.若tan(π+α)=3,则sin(-α)cos(π-α)=(  )
A.$-\frac{3}{10}$B.$\frac{3}{10}$C.$-\frac{1}{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知$a={log_{\frac{1}{3}}}\frac{1}{2}$,b=log23,c=log34,则(  )
A.a>b>cB.b>a>cC.c>b>aD.b>c>a

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数$f(x)=\left\{{\begin{array}{l}{x+6,x≤2}\\{{3^x}-1,x>2}\end{array}}\right.$,若f(a)=80,则f(a-4)=(  )
A.0B.3C.6D.9

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知各项不为0的等差数列{an}满足${a_5}-{a_7}^2+{a_9}=0$,数列{bn}是等比数列,且b7=a7,则b2b8b11的值等于8.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离的最小值为$\sqrt{2}-1$.
(1)求椭圆的方程;
(2)已知经过点F的动直线l与椭圆交于不同的两点A,B,点$M({-\frac{5}{4},0})$,求$\overrightarrow{MA}•\overrightarrow{MB}$的值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.一般地,我们把离心率为$\frac{{\sqrt{5}-1}}{2}$的椭圆称为“黄金椭圆”.对于下列命题:
①椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$是黄金椭圆;
②若椭圆$\frac{x^2}{12}+\frac{y^2}{m}=1$是黄金椭圆,则$m=6\sqrt{5}-6$;
③在△ABC中,B(-2,0),C(2,0),且点A在以B,C为焦点的黄金椭圆上,则△ABC的周长为$6+2\sqrt{5}$;
④过黄金椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点F(c,0)作垂直于长轴的垂线,交椭圆于A,B两点,则$|{AB}|=({\sqrt{5}-1})a$;
⑤设F1,F2是黄金椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点,则椭圆C上满足∠F1PF2=90°的点P不存在.
其中所有正确命题的序号是③④⑤.(把你认为正确命题的序号都填上).

查看答案和解析>>

同步练习册答案