相关习题
 0  226884  226892  226898  226902  226908  226910  226914  226920  226922  226928  226934  226938  226940  226944  226950  226952  226958  226962  226964  226968  226970  226974  226976  226978  226979  226980  226982  226983  226984  226986  226988  226992  226994  226998  227000  227004  227010  227012  227018  227022  227024  227028  227034  227040  227042  227048  227052  227054  227060  227064  227070  227078  266669 

科目: 来源: 题型:解答题

16.已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=2,点E为AB中点,点F为PD中点.
(1)证明平面PED⊥平面PAB;
(2)求二面角P-AB-F的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AE⊥平面ABCD,EF∥CD,BC=CD=AE=EF=$\frac{1}{2}$AD=1.
(1)求证:CE∥平面ABF;
(2)在直线BC上是否存在点M,使二面角E-MD-A的大小为$\frac{π}{3}$?若存在,求出CM的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F、G分别是AB、PC、CD的中点,|PA|=|AB|=|AD|=1,
(1)求证:EF∥平面PAD;
(2)求证EF⊥CD,EF⊥PD,且|EF|=$\frac{1}{2}$|PD|;
(3)求直线PD与AC所成的角;
(4)求直线AP与平面PCD所成的角;
(5)求平面PAB与平面PCD所成的角.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在如图所示的几何体EFABC中,已知△ABC是等腰三角形,AB=AC,AF⊥平面ABC,D为BC的中点,DE∥AF且BC=AF=2DE=2.
(1)求证:AB∥平面EFC;
(2)若∠BAC=120°,求二面角B-EF-C的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,有一块抛物线形钢板,其下口宽为2米,高为2米.计划将此钢板切割成等腰梯形的形状,下底AB是抛物线的下口,上底CD的端点在抛物线上.
(Ⅰ)请建立适当的直角坐标系,求抛物线形钢板所在抛物线方程;
(Ⅱ)记CD=2x,写出梯形面积S以x为自变量的函数关系式,并指出定义域;
(Ⅲ)求面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

11.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,离心率为e,过F2的直线与椭圆的交于A,B两点,若△F1AB是以A为顶点的等腰直角三角形,则e2=(  )
A.3-2$\sqrt{2}$B.5-3$\sqrt{2}$C.9-6$\sqrt{2}$D.6-4$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知椭圆和双曲线焦点F1,F2相同,且离心率互为倒数,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,椭圆的离心率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,点F1(-1,0),F2(1,0),动点M到点F2的距离是$2\sqrt{2}$,线段MF1的中垂线交MF2于点P.
(Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)设直线l:y=kx+m与轨迹G交于M、N两点,直线F2M与F2N的倾斜角分别为α、β,且α+β=π,求证:直线l经过定点,并求该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C的中心在原点,对称轴为坐标轴,右焦点为F(2,0),离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)过点F且不垂直于坐标轴的直线l交椭圆C于不同的两点M,N,线段MN的垂直平分线与x轴交于点D,求点D的横坐标的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,F是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,O是坐标原点,|OF|=$\sqrt{5}$,过F作OF的垂线交椭圆于P0,Q0两点,△OP0Q0的面积为$\frac{4\sqrt{5}}{3}$.
(1)求该椭圆的标准方程;
(2)若过点M(-$\sqrt{5}$,0)的直线l与上、下半椭圆分别交于点P,Q,且|PM|=2|MQ|,求直线l的方程.

查看答案和解析>>

同步练习册答案