相关习题
 0  226885  226893  226899  226903  226909  226911  226915  226921  226923  226929  226935  226939  226941  226945  226951  226953  226959  226963  226965  226969  226971  226975  226977  226979  226980  226981  226983  226984  226985  226987  226989  226993  226995  226999  227001  227005  227011  227013  227019  227023  227025  227029  227035  227041  227043  227049  227053  227055  227061  227065  227071  227079  266669 

科目: 来源: 题型:解答题

6.已知O为坐标原点,F为椭圆C:x2+$\frac{y^2}{2}$=1在y轴正半轴上的焦点,过F且斜率为-$\sqrt{2}$的直线l与C交与A、B两点,四边形OAPB为平行四边形.
(Ⅰ)证明:点P在椭圆C上;
(Ⅱ)求四边形OAPB的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

5.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为(  )
A.20B.40C.77D.546

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=x3ax,其中a>0且a≠1,若φ(x)=$\frac{f'(x)}{a^x}$是区间(0,2)上的增函数.
(Ⅰ)求a的最小值;
(Ⅱ)当a取得最小值时,证明:对于任意的0<x1<x2,当x1+x2=6时,有f(x1)<f(x2).

查看答案和解析>>

科目: 来源: 题型:选择题

3.某几何体的三视图如图所示,则其表面积为(  )
A.$\frac{17π}{2}$B.C.$\frac{19π}{2}$D.10π

查看答案和解析>>

科目: 来源: 题型:选择题

2.要计算$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2016}$的结果,下面的程序框图中的横线上可以填(  )
A.n<2016?B.n≤2016?C.n>2016?D.n≥2016?

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知点F1,F2为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点,若椭圆上存在点P使得$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,则此椭圆的离心率的取值范围是(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{3}$,$\frac{1}{2}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图所示,已知圆柱OO1的底面半径是2,高是4,ABCD是圆柱的一个轴截面,动点E从B点出发,沿着圆柱的侧面到达点D,当其经过的路程最短时,在侧面留下的曲线是S,将轴截面ABCD绕着轴OO1逆时针旋转θ(0<θ<π)后,边B1C1和曲线S交于点F.
(1)当θ=$\frac{π}{2}$时,在A1D1上是否存在点G,使C1G∥平面A1BF;
(2)当θ=$\frac{π}{3}$时,试求二面角D-AB-F的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图所示,在三棱锥A-BCD中,AB⊥平面BCD,BC⊥DC,点E是AC的中点,点F是线段AD上的动点,AB=BC=2.
(1)若DC∥平面BEF,求$\frac{AF}{AD}$的值;
(2)若EF⊥AD,当平面BEF和平面BCD所成的二面角的余弦值是$\frac{2\sqrt{17}}{17}$时,求CD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,多面体SABCD中面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=$\sqrt{3}$AD.
(I)求证:面SDB⊥面ABCD.
(Ⅱ)求面SBD与面SAB所成的二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在三棱柱PBC-QAD中,侧面ABCD为矩形,PA⊥CD.
(1)求证:平面PAD⊥平面PDC;
(2)若BC=$\sqrt{6}$,PB=$\sqrt{2}$,PC=2,当三棱锥P-BCD的体积最大时,求二面角A-BP-C的大小.

查看答案和解析>>

同步练习册答案