相关习题
 0  226929  226937  226943  226947  226953  226955  226959  226965  226967  226973  226979  226983  226985  226989  226995  226997  227003  227007  227009  227013  227015  227019  227021  227023  227024  227025  227027  227028  227029  227031  227033  227037  227039  227043  227045  227049  227055  227057  227063  227067  227069  227073  227079  227085  227087  227093  227097  227099  227105  227109  227115  227123  266669 

科目: 来源: 题型:选择题

3.已知集合A={x|x2≥16},B={m},若A∪B=A,则实数m的取值范围是(  )
A.(-∞,-4)B.[4,+∞)C.[-4,4]D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

2.若f(x)=3-2x,则|f(x+1)+2|≤3的解集为[0,3].

查看答案和解析>>

科目: 来源: 题型:解答题

1.在2015年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3-0或者3-1取胜的球队积3分,负队积0分;3-2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为$\frac{2}{3}$.
(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?
(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知不等式2x+m+$\frac{8}{x-1}$>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是(  )
A.m>-10B.m<-10C.m>-8D.m<-8

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图所示,△ABC中,AB⊥AC,AB=6,AC=8.边AB,AC的中点分别为M,N.若O为线段MN上任一点,则$\overrightarrow{OB}•\overrightarrow{OC}+\overrightarrow{OA}•\overrightarrow{OB}+\overrightarrow{OA}•\overrightarrow{OC}$的取值范围是[$-\frac{180}{11},-9$].

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)=x2-2ax+5(a>1),g(x)=log3x.若函数f(x)的定义域与值域均为[1,a],且对于任意的x1,x2∈[1,a+1],$|{f({x_1})-g({x_2})}|≤{4^t}+{2^t}$恒成立,则满足条件的实数t的取值范围是(  )
A.[-2,8]B.[0,8]C.[0,+∞)D.[0,8)

查看答案和解析>>

科目: 来源: 题型:填空题

17.设f(sinα+cosα)=sinα•cosα,则f(x)的定义域为[-$\sqrt{2}$,$\sqrt{2}$],$f(sin\frac{π}{6})$的值为-$\frac{3}{8}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.设函数$f(x)=\left\{\begin{array}{l}\frac{1}{x},x>1\\-x-2,x≤1\end{array}\right.$,则f[f(2)]=-$\frac{5}{2}$,不等式$f(a)>\frac{1}{2}$的解集是(-∞,-$\frac{5}{2}$)∪(1,2).

查看答案和解析>>

科目: 来源: 题型:选择题

15.某几何体的三视图如图所示,且该几何体的体积是$\frac{3}{2}$,则正视图中的x的值是(  )
A.2B.$\frac{9}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知数列{an}满足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}({n≥1,n∈{N^*}})$,数列{bn}是以1为首项,2公比的等比数列.
(Ⅰ)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(Ⅱ)求数列$\left\{{\frac{b_n}{a_n}}\right\}$的前n项和Sn

查看答案和解析>>

同步练习册答案