相关习题
 0  226955  226963  226969  226973  226979  226981  226985  226991  226993  226999  227005  227009  227011  227015  227021  227023  227029  227033  227035  227039  227041  227045  227047  227049  227050  227051  227053  227054  227055  227057  227059  227063  227065  227069  227071  227075  227081  227083  227089  227093  227095  227099  227105  227111  227113  227119  227123  227125  227131  227135  227141  227149  266669 

科目: 来源: 题型:选择题

5.设x、y、z是两两不等的实数,且满足下列等式:$\root{6}{{x^3{(y-x)}^3}}+\root{6}{{x^3{(z-x)}^3}}=\root{6}{y-x}-\root{6}{x-z}$,则代数式x3+y3+z3-3xyz的值是(  )
A.0B.1
C.3D.条件不足,无法计算

查看答案和解析>>

科目: 来源: 题型:解答题

4.设数列{an}满足a1=a,a2=b,2an+2=an+1+an
(1)设bn=an+1-an,证明:若a≠b,则{bn}是等比数列;
(2)若$\lim_{n→∞}({a_1}+{a_2}+…+{a_n})=4$,求a,b的值.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知抛物线的顶点在原点,焦点在x轴上,△ABC三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在的直线方程为4x+y-20=0,则抛物线方程为(  )
A.y2=16xB.y2=8xC.y2=-16xD.y2=-8x

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知向量$\overrightarrow a,\overrightarrow b$为非零向量,$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,则$\overrightarrow a,\overrightarrow b$夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.设函数f(x)=|2x-1|-|x+2|.
(1)解不等式:f(x)>0;
(2)若f(x)+3|x+2|≥|a-1|对一切实数x均成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

20.先阅读参考材料,再解决此问题:
参考材料:求抛物线弧y=x2(0≤x≤2)与x轴及直线x=2围成的封闭图形的面积
解:把区间[0,2]进行n等分,得n-1个分点A($\frac{2i}{n}$,0)(i=1,2,3,…,n-1),过分点Ai,作x轴的垂线,交抛物线于Bi,并如图构造n-1个矩形,先求出n-1个矩形的面积和Sn-1,再求$\underset{lim}{n→∞}$Sn-1,即是封闭图形的面积,又每个矩形的宽为$\frac{2}{n}$,第i个矩形的高为($\frac{2i}{n}$)2,所以第i个矩形的面积为$\frac{2}{n}$•($\frac{2i}{n}$)2
Sn-1=$\frac{2}{n}$[$\frac{4•{1}^{2}}{{n}^{2}}$+$\frac{4•{2}^{2}}{{n}^{2}}$+$\frac{4•{3}^{2}}{{n}^{2}}$+…+$\frac{4•(n-1)^{2}}{{n}^{2}}$]=$\frac{8}{{n}^{3}}$[12+22+32+…+(n-1)2]=$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$
所以封闭图形的面积为$\underset{lim}{n→∞}$$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$=$\frac{8}{3}$
阅读以上材料,并解决此问题:已知对任意大于4的正整数n,不等式$\sqrt{1-\frac{{1}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{2}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{3}^{2}}{{n}^{2}}}$+…+$\sqrt{1-\frac{(n-1)^{2}}{{n}^{2}}}$<an恒成立,则实数a的取值范围为[$\frac{π}{4}$,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

19.在极坐标下,定义两个点(ρ1,θ1)和(ρ2,θ2)(ρ1,ρ2>0,0≤θ1,θ2≤2π)的“极坐标中点“为($\frac{{ρ}_{1}+{ρ}_{2}}{2}$,$\frac{{θ}_{1}+{θ}_{2}}{2}$),设点A、B的极坐标为(4,$\frac{π}{100}$)与(8,$\frac{51π}{100}$),设M为线段AB的中点,N为点A、B的“极坐标中点”,则线段MN的长度的平方为56-36$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知下列三个命题:
①若两组数据的平均数相等,则它们的标准差也相等;
②在区间[-1,5]上随机选取一个数x,则x≥3的概率为$\frac{2}{3}$;
③直线x+y+1=0与圆${x^2}+{y^2}=\frac{1}{2}$相切;
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

17.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量$\overrightarrow{OA}=({{x_1},f({x_1})}),\overrightarrow{OB}=({{x_2},f({x_2})}),\overrightarrow{OM}=({x,y})$,且实数λ满足x=λx1+(1-λ)x2,此时向量$\overrightarrow{ON}=λ\overrightarrow{OA}+({1-λ})\overrightarrow{OB}$.若$|{\overrightarrow{MN}}$|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2-2x在区间[1,2]上可在标准K下线性近似,那么K的最小值是$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.袋中有六张形状、质地等完全相同的卡片,其中红色卡片四张,蓝色卡片两张,每张卡片都标有一个数字,如茎叶图所示:
(Ⅰ)从以上六张卡片中任取两张,求这两张卡片颜色相同的概率;
(Ⅱ)从以上六张卡片中任取两张,求这两张卡片数字之和小于50的概率.

查看答案和解析>>

同步练习册答案