相关习题
 0  226969  226977  226983  226987  226993  226995  226999  227005  227007  227013  227019  227023  227025  227029  227035  227037  227043  227047  227049  227053  227055  227059  227061  227063  227064  227065  227067  227068  227069  227071  227073  227077  227079  227083  227085  227089  227095  227097  227103  227107  227109  227113  227119  227125  227127  227133  227137  227139  227145  227149  227155  227163  266669 

科目: 来源: 题型:选择题

12.设i是虚数单位,复数$\frac{4i}{1+i}$=(  )
A.2-2iB.-2-2iC.-2+2iD.2+2i

查看答案和解析>>

科目: 来源: 题型:选择题

11.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.平面OCB1的法向量$\overrightarrow{n}$=(x,y,z)为(  )
A.(0,1,1)B.(1,-1,1)C.(0,1,-1)D.(-1,-1,1)

查看答案和解析>>

科目: 来源: 题型:解答题

10.某校拟在高一年级开设英语口语选修课,该年级男生600人,女生480人.按性别分层抽样,抽取90名同学做意向调查.
(I)求抽取的90名同学中的男生人数;
(Ⅱ)将下列2×2列联表补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为“该校高一学生是否愿意选修英语口语课程与性别有关”?
愿意选修英语口语课程有效不愿意选修英语口语课程合计
男生252550
女生301040
合计553590
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.100.0500.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目: 来源: 题型:填空题

9.将2红2白共4个球随机排成一排,则同色球均相邻的概率为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知函数f(x)=|log4x|,正实数m、n满足m<n,且f(m)=f(n),若f(x)在区间[m5,n]上的最大值为5,则m、n的值分别为(  )
A.$\frac{1}{2}$、2B.$\frac{1}{4}$、4C.$\frac{1}{4}$、2D.$\frac{1}{2}$、4

查看答案和解析>>

科目: 来源: 题型:填空题

7.若${({x+\frac{a}{x^2}})^9}$的二项展开式中的常数项是84,则实数a=1.

查看答案和解析>>

科目: 来源: 题型:选择题

6.等差数列{an}中,a3=5,S6=36,则S9=(  )
A.17B.19C.81D.100

查看答案和解析>>

科目: 来源: 题型:选择题

5.坐标平面上的点集S满足S=$\{(x,y)|{log_2}({y^2}-y+2)=2{sin^4}x+2{cos^4}x,-\frac{π}{8}≤x≤\frac{π}{4}\}$,将点集S中的所有点向y轴作投影,所得投影线段的总长度为(  )
A.1B.$\frac{{\sqrt{3}+\sqrt{5}}}{2}$C.$\sqrt{8\sqrt{2}-7}$D.2

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-c,0<x≤1}\\{{x}^{2}-bx-1,x>1}\end{array}\right.$在(0,+∞)上不是单调函数,设b、c为常数
(1)若c=0,求b的取值范围;
(2)若b≤2,c>1,且f(c)-f(b)≠k(c2-b2),求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

3.设函数y=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<e}\\{alnx,x≥e}\end{array}\right.$的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是(0,$\frac{1}{e+1}$].

查看答案和解析>>

同步练习册答案