相关习题
 0  227007  227015  227021  227025  227031  227033  227037  227043  227045  227051  227057  227061  227063  227067  227073  227075  227081  227085  227087  227091  227093  227097  227099  227101  227102  227103  227105  227106  227107  227109  227111  227115  227117  227121  227123  227127  227133  227135  227141  227145  227147  227151  227157  227163  227165  227171  227175  227177  227183  227187  227193  227201  266669 

科目: 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=$\frac{7}{3}$.
(I)求椭圆C的方程;
(Ⅱ)与抛物线相切于第一象限的直线l,与椭圆交于A,B两点,与x轴交于M点,线段AB的垂直平分线与y轴交于N点,求直线MN斜率的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在数列{an}中.a1=2,an+1=2an-n+1,n∈N*
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:填空题

17.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=3$\overrightarrow{BA}$•$\overrightarrow{BC}$,则$\frac{tanA}{tanB}$=$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.求函数y=-5sin(2x-$\frac{π}{4}$)的最大值,最小值及周期,并求函数在取得最大值和最小值时,x的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.正四棱柱ABCD-A1B1C1D1底面边长为$\sqrt{3}$,高为1,O为下底面的中心.
求:(1)求异面直线AB与CD1所成角的大小;
(2)正四棱锥O-ABCD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ-$\frac{π}{6}$)+1(0<φ<π,ω>0)为偶函数,且f(x)图象的两对称轴间的距离为$\frac{π}{3}$.
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的对称轴方程和对称中心;
(3)当x∈[-$\frac{π}{6}$,$\frac{π}{2}$]求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:选择题

13.若A(xl,y1),B(x2,y2)为平面上两点,则定义A?B=x1y1+x2y2,已知点M($\sqrt{3}$,sinx),N(-1,cosx),设函数f(x)=M?N,将f(x)的图象向左平移φ(φ>0)个单位长度后,所得图象关于y轴对称,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b.
(1)求证a,b,c成等差数列;
(2)若b=2,当角B取最大值时,求△ABC面积S.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,对任意的正整数n,都有${a}_{n+1}^{2}$=an•an+2恒成立,且a2=1,S2=$\frac{3}{2}$.
(I)求数列{an}的通项公式;
(Ⅱ)若数列{bn}对于任意的正整数n,均有b1an+b2an-1+b3an-2+…+bna1=3n-2n,记数列{bn}前n项和为Tn,如果Tn≥k对于实数k恒成立,求k的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则$\frac{{a}^{2}+{e}^{2}}{2b}$的最小值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案