相关习题
 0  227040  227048  227054  227058  227064  227066  227070  227076  227078  227084  227090  227094  227096  227100  227106  227108  227114  227118  227120  227124  227126  227130  227132  227134  227135  227136  227138  227139  227140  227142  227144  227148  227150  227154  227156  227160  227166  227168  227174  227178  227180  227184  227190  227196  227198  227204  227208  227210  227216  227220  227226  227234  266669 

科目: 来源: 题型:解答题

20.已知动圆M过定点F(0,-1),且与直线y=1相切,圆心M的轨迹为曲线C,设P为直线l:x-y+2=0上的点,过点P作曲线C的两条切线PA,PB,其中A,B为切点.
(Ⅰ)求曲线C的方程;
(Ⅱ)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(Ⅲ)当点P在直线l上移动时,求|AF|•|BF|的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x+5},x≤0}\\{f(x-5),x>0}\end{array}\right.$,则f(2016)=(  )
A.$\frac{1}{2}$B.2C.16D.32

查看答案和解析>>

科目: 来源: 题型:选择题

18.在边长为4的等边三角形OAB内部任取一点P,使得$\overrightarrow{OA}$•$\overrightarrow{OP}$≤4的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{8}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在△ABC中,点D在边BC上,BD=2,BA=3,AD=$\sqrt{7}$,∠C=45°.
(1)求∠B的大小;
(2)求△ABD的面积及边AC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

16.数列{an}满足${a_1}=2,{a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{(n+\frac{1}{2}){a_n}+{2^n}}}(n∈N*)$.
(1)设${b_n}=\frac{2^n}{a_n}$,求数列{bn}的通项公式; 
(2)设${c_n}=\frac{1}{{n(n+1){a_{n+1}}}}-\frac{1}{{{2^{n+2}}}}$,数列{cn}的前n项和为Sn,不等式$\frac{1}{4}{m^2}-\frac{1}{4}m>{S_n}$对一切n∈N*成立,求实数m的范围.

查看答案和解析>>

科目: 来源: 题型:选择题

15.函数y=$\frac{cosπx}{x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知函数f(x)=ax(a>0,a≠1)在区间[-1,2]上的最大值为8,最小值为m.若函数g(x)=(3-10m)$\sqrt{x}$是单调增函数,则a=$\frac{1}{8}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,在直三棱柱ABC-A1B1C1中,AC=4,BC=4,AA1=4,点D是AB的中点,点E是AC的中点.
(1)求证:B1D与C1E相交;
(2)若C1E⊥BC,求直线A1D与平面B1C1D所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知数列{bn}满足b1=$\frac{1}{2}$,2bn+1-bn•bn+1=1,则b1+$\frac{{b}_{2}}{{2}^{2}}$+$\frac{{b}_{3}}{{3}^{2}}$+…+$\frac{{b}_{100}}{10{0}^{2}}$=(  )
A.$\frac{97}{100}$B.$\frac{99}{100}$C.$\frac{100}{101}$D.$\frac{102}{101}$

查看答案和解析>>

科目: 来源: 题型:填空题

11.若x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≥0}\\{x+2y-4≥0}\\{x-3y-4≤0}\end{array}\right.$,则z=x2+y2的最小值为5.

查看答案和解析>>

同步练习册答案