相关习题
 0  227098  227106  227112  227116  227122  227124  227128  227134  227136  227142  227148  227152  227154  227158  227164  227166  227172  227176  227178  227182  227184  227188  227190  227192  227193  227194  227196  227197  227198  227200  227202  227206  227208  227212  227214  227218  227224  227226  227232  227236  227238  227242  227248  227254  227256  227262  227266  227268  227274  227278  227284  227292  266669 

科目: 来源: 题型:解答题

7.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM,N是AM上任一点.
(1)求证:DM⊥BM;
(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E-AM-D的余弦值$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.己知f(x)是定义在R上的奇函数,当x>0时,f(x)=log2x-1,则f(-$\frac{\sqrt{2}}{2}$)=$\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.广场舞是现代城市群众文化、娱乐发展的产物,其兼具文化性和社会性,是精神文明建设成果的一个重要指标和象征.2015年某高校社会实践小组对某小区跳广场舞的人的年龄进行了凋查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.
(1)估计在40名广场舞者中年龄分布在[40,70)的人数;
(2)求40名广场舞者年龄的中位数和平均数的估计值;
(3)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者年龄在[30,40)中的人数X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

4.巴蜀中学的“开心农场”有一如图所示的7块地方,现准备在这7块地方种植不同的植物,要求相邻地方不能种同一植物,现在只有4种不同的植物可供选择,每种植物有足量的数量,恰好把4种不同植物都用上的不同种植方法有576种.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,若直线l:y=-$\frac{\sqrt{3}}{3}$x+1经过椭圆C的右焦点及上顶点.
(l)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于A,B两点,点A关于x轴的对称点为A′(A′与B不重合),则直线A′B与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.六本不同的书,按照以下要求处理,各有几种分法?
(1)分三堆,一堆一本,一堆两本,一堆三本;
(2)甲得一本,乙得两本,丙得三本;
(3)一人得一本,一人得两本,一人得三本;
(4)平均分给甲、乙、丙三人,每人两本;
(5)平均分成三堆,每堆两本.

查看答案和解析>>

科目: 来源: 题型:填空题

1.M是$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1上的动点,已知点F(1,0)、P(3,1),则2|MF|-|MP|的最大值为1.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在四棱锥P-ABCD中,AD∥BC,∠ABC=∠APB=90°,点M是线段AB上的一点,且PM⊥CD,AB=BC=2PB=2AD=4BM.
(1)证明:平面PAB⊥平面ABCD;
(2)求平面ABCD与平面PCD所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在直角梯形BCEF中,BF∥EC,且EF=$\frac{1}{2}$BF=$\frac{1}{3}$CE,EF⊥EC,A为BF的中点,ED=$\frac{1}{3}$EC,现沿直线AD将四边形ADEF折起,如图2,使得平面ADEF⊥平面ABCD,M为CE的中点.

(1)证明:BM∥平面ADEF;
(2)求平面ADEF与平面BEC所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,F1、F2为其左、右焦点,M为椭圆E上一点,且△MF1F2面积的最大值为4$\sqrt{2}$.
(1)求椭圆E的标准方程;
(2)设直线l:y=x+m(m∈R)与椭圆E交于不同两点A、B,且|AB|=3$\sqrt{2}$,P为直线y=2上一点,满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求点P的坐标.

查看答案和解析>>

同步练习册答案