相关习题
 0  227123  227131  227137  227141  227147  227149  227153  227159  227161  227167  227173  227177  227179  227183  227189  227191  227197  227201  227203  227207  227209  227213  227215  227217  227218  227219  227221  227222  227223  227225  227227  227231  227233  227237  227239  227243  227249  227251  227257  227261  227263  227267  227273  227279  227281  227287  227291  227293  227299  227303  227309  227317  266669 

科目: 来源: 题型:填空题

15.已知关于的不等式0≤x2+$\frac{7}{9}$x-$\frac{{2}^{t}}{({2}^{t}+1)^{2}}$<$\frac{2}{9}$对任意t≥1恒成立,则所有x的取值集合是{-1,$\frac{2}{9}$}.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在△ABC中,内角A、B、C所对的边分别为a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(Ⅰ)求角C的值;
(Ⅱ)若点M是△ABC中角C的外角内的一点,且CM=2,过点M作MF⊥BC,ME⊥AC,垂足分别为F,E,求MF+ME的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.数列{an}前n项和Sn,满足$\frac{n+m}{2}$(an-am)=Sn-Sm,a1=1.(m∈N*,n∈N*,且m≠n)
(1)令bn=$\frac{{a}_{n}}{n}$,求数列{bn}的通项公式;
(2)m、k、n是不等的正整数,若am、ak、an成等比数列.试证明m、k、n不构成等比数列.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知c为实数,对于实数p,q定义运算“*”,p*q=$\left\{\begin{array}{l}{{p}^{2}+cq-{c}^{2}(p≥q)}\\{-\frac{1}{2}{p}^{2}+cq+\frac{1}{2}{c}^{2}(p<q)}\end{array}\right.$且函数f(x)=(2x-c)*x
(1)若c=$\frac{1}{3}$,且方程f(x)=d恰有三个不相等的实根,求实数d的取值范围
(2)若c>0,且函数f(x)在区间(a,b)上既有最大值又有最小值,试分别求出a,b的取值范围(用c表示)

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=x2-2|x-a|(a∈R).
(I)当a=0时,求方程f(x)=0的根;
(Ⅱ)当a>0时,若对任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=sinωx+acosωx(其中ω>0)满足f(0)=$\sqrt{3}$,且f(x)图象的相邻两条对称轴间的距离为π.
(1)求a与ω的值;
(2)若f(α)=$\sqrt{2}$,α∈(-$\frac{π}{6}$,$\frac{π}{6}$),求cos(α-$\frac{5π}{12}$)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数$f(x)=Asin(wx+φ)(A>0,w>0,|φ|)<\frac{π}{2})$的图象的一个最高点的坐标为$(\frac{π}{6},2)$,与其相邻的一个最低点的坐标为$(\frac{2π}{3},-2)$
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间及对称轴方程.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数$f(x)=x+\frac{a}{x}+b$且$f(1)=2,f(2)=\frac{5}{2}$.
(1)求f(x)的解析式并判断函数f(x)的奇偶性;
(2)判断函数f(x)在区间(1,+∞)上单调性,并用定义法证明.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足:$|{\overrightarrow a}|=2,|{\overrightarrow b}|=4,\overrightarrow c=\overrightarrow a-\overrightarrow b$,且$\overrightarrow c⊥\overrightarrow a$
(1)求向量$\overrightarrow a$与$\overrightarrow b$的夹角;
(2)求$\overrightarrow a•(\overrightarrow a+3\overrightarrow b)$及$|{3\overrightarrow a+\overrightarrow b}|$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知x∈R,向量$\overrightarrow{AB}=(-1,x+2),\overrightarrow{CD}=(x,1)$,则$\overrightarrow{CD}$在$\overrightarrow{AB}$方向上的投影的最大值为2.

查看答案和解析>>

同步练习册答案