相关习题
 0  227263  227271  227277  227281  227287  227289  227293  227299  227301  227307  227313  227317  227319  227323  227329  227331  227337  227341  227343  227347  227349  227353  227355  227357  227358  227359  227361  227362  227363  227365  227367  227371  227373  227377  227379  227383  227389  227391  227397  227401  227403  227407  227413  227419  227421  227427  227431  227433  227439  227443  227449  227457  266669 

科目: 来源: 题型:填空题

15.己知中心在原点,焦点在坐标轴上的双曲线的离心率为$\frac{\sqrt{5}}{2}$,则其渐近线方程为y=±$\frac{1}{2}$x或y=±2x,两渐近线的夹角为arctan$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  
A.f(x)=lg$\frac{x-1}{x+1}$B.f(x)=ex-$\frac{1}{{e}^{x}}$C.f(x)=$\frac{1}{{x}^{3}}$D.f(x)=x2-4

查看答案和解析>>

科目: 来源: 题型:解答题

13.设函数f(x)=x2-2x+3,g(x)=x2-x.
(1)解不等式|f(x)-g(x)|≥2016;
(2)若|f(x)-a|<2成立的充分条件是1≤x≤2,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

12.△ABC中,已知:AB=2,BC=1,CA=$\sqrt{3}$,分别在边AB,BC,CA上取点D,E,F,使△DEF是等边三角形(如图),设∠FEC=α,问当sinα=$\frac{2\sqrt{7}}{7}$时,△DEF的边长最短.

查看答案和解析>>

科目: 来源: 题型:选择题

11.双曲线C:$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差数列,O为坐标原点,则点O到直线PF2的距离为(  )
A.$\frac{6\sqrt{14}}{5}$B.$\frac{12\sqrt{14}}{5}$C.2$\sqrt{7}$D.4$\sqrt{7}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F(c,0)是右焦点,圆x2+y2=c2与双曲线右支的一个交点是P,若直线FP与双曲线左支有交点,则双曲线离心率的取值范围是(  )
A.(2,+∞)B.($\sqrt{5}$,+∞)C.(1,2)D.(1,$\sqrt{5}$)

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-4y2=1(a>0)的右顶点到其一条渐近线的距离等于$\frac{\sqrt{3}}{4}$,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,直线l的方程为x-y+4=0,在抛物线上有一动点M到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为(  )
A.$\frac{5\sqrt{2}}{2}$+2B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目: 来源: 题型:选择题

8.设m>0,双曲线M:$\frac{{x}^{2}}{m}$-y2=1与圆N:x2+(y-m)2=1相切,A(-$\sqrt{m+1}$,0),B($\sqrt{m+1}$,0),若圆N上存在一点P满足|PA|-|PB|=2$\sqrt{m}$.则点P到x轴的距离为(  )
A.m3B.m2C.mD.$\frac{m}{1+m}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点分别为F1,F2,O为坐标原点,以OF2为直径的圆交双曲线于A,B两点,若△F1AB的外接圆过点($\frac{4\sqrt{{a}^{2}+{b}^{2}}}{5}$,0),则该双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-4y2=1(a>0)的右顶点到其一条渐近线的距离等于$\frac{\sqrt{3}}{4}$,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,则抛物线E上的动点M到直线l1:4x-3y+6=0和l2:x=-1的距离之和的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案