相关习题
 0  227323  227331  227337  227341  227347  227349  227353  227359  227361  227367  227373  227377  227379  227383  227389  227391  227397  227401  227403  227407  227409  227413  227415  227417  227418  227419  227421  227422  227423  227425  227427  227431  227433  227437  227439  227443  227449  227451  227457  227461  227463  227467  227473  227479  227481  227487  227491  227493  227499  227503  227509  227517  266669 

科目: 来源: 题型:解答题

14.已知函数$f(x)=cosx•sin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4},x∈R$.
(Ⅰ)求f(x)的最大值;
(Ⅱ)求f(x)的图象在y轴右侧第二个最高点的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

13.平面区域A1={(x,y)|x2+y2<4,x,y∈R},A2={(x,y)||x|+|y|≤3,x,y∈R).在A2内随机取一点,则该点不在A1的概率为1-$\frac{2π}{9}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数$f(x)+2=\frac{2}{{f(\sqrt{x+1})}}$,当x∈(0,1]时,f(x)=x2,若在区间(-1,1]内,g(x)=f(x)-t(x+1)有两个不同的零点,则实数t的取值范围是(  )
A.$[\frac{1}{2},+∞)$B.$[-\frac{1}{2},\frac{1}{2}]$C.$[-\frac{1}{2},0)$D.$(0,\frac{1}{2}]$

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知函数f(x)满足f(x)+f(2-x)=2,当x∈(0,1]时,f(x)=x2,当x∈(-1,0]时,$f(x)+2=\frac{2}{{f(\sqrt{x+1})}}$,若定义在(-1,3)上的函数g(x)=f(x)-t(x+1)有三个不同的零点,则实数t的取值范围是(  )
A.$(0,\frac{1}{2}]$B.$[\frac{1}{2},+∞)$C.$(0,6+2\sqrt{7})$D.$(0,6-2\sqrt{7})$

查看答案和解析>>

科目: 来源: 题型:解答题

10.某游戏网站为了了解某款游戏玩家的年龄情况,现随机调查100位玩家的年龄整理后画出频率分布直方图如图所示.
(1)求100名玩家中各年龄组的人数,并利用所给的频率分布直方图估计该款游戏所有玩家的平均年龄;
(2)若已从年龄在[35,45),[45,55)的玩家中利用分层抽样选取6人组成一个游戏联盟,现从这6人中选出2人,求这两人在不同年龄组的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知双曲线C:$\frac{{x}^{2}}{a}$-$\frac{{y}^{2}}{4}$=1(a>0),的离心率为$\frac{\sqrt{13}}{3}$,右焦点为F,点F在渐近线上的射影为M,O为坐标原点,则$\overrightarrow{OF}$$•\overrightarrow{MF}$=4.

查看答案和解析>>

科目: 来源: 题型:选择题

8.不透明袋子中放有大小相同的5个球,球上分别标有号码1,2,3,4,5,若从袋中任取三个球,则这三个球号码之和为5的倍数的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{2}{9}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知过双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1左焦点F1的弦AB长为6,求△ABF2(F2为右焦点)的周长.

查看答案和解析>>

科目: 来源: 题型:选择题

6.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线交双曲线的右支于C,D两点,与双曲线的渐近线交于点P,点C和点P在第-象限,点D在第四象限,若|PC|=|CD|,则该双曲线的离心率为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{3\sqrt{5}}{5}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{9}{8}$

查看答案和解析>>

科目: 来源: 题型:填空题

5.若数列{an}满足a1=-1,n(an+1-an)=2-an+1(n∈N*),则数列{an}的通项公式是an=2-$\frac{3}{n}$.

查看答案和解析>>

同步练习册答案