相关习题
 0  227455  227463  227469  227473  227479  227481  227485  227491  227493  227499  227505  227509  227511  227515  227521  227523  227529  227533  227535  227539  227541  227545  227547  227549  227550  227551  227553  227554  227555  227557  227559  227563  227565  227569  227571  227575  227581  227583  227589  227593  227595  227599  227605  227611  227613  227619  227623  227625  227631  227635  227641  227649  266669 

科目: 来源: 题型:选择题

4.函数f(x)=2sinx的定义域和值域都是[a,b],这样的区间[a,b]有(  )
A.1个B.2个C.3个D.不存在

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知A为△ABC的最小内角,若向量$\overrightarrow{a}$=(cosA,1),$\overrightarrow{b}$=(2sin(A+$\frac{π}{6}$),1),则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是(  )
A.[-$\frac{1}{2}$,$\frac{5}{2}$]B.(-$\frac{1}{2}$,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.(2,$\frac{5}{2}$]

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知0<a<b<c,且a,b,c是成等比数列的整数,n为大于1的整数,则logan,logbn,logcn(  )
A.成等差数列B.成等比数列
C.各项倒数成等差数列D.以上都不对

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知抛物线y2=4x的焦点为F,定点P(4,-2),在抛物线上找一点M,使得|PM|+|MF|最小,则点M的坐标为(  )
A.(2,-2)B.(1,2)C.(1,-2)D.(-1,2)

查看答案和解析>>

科目: 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)射线OM:θ=α(其中$0<α<\frac{π}{2}$)与圆C交于O、P两点,与直线l交于点M,射线ON:$θ=α+\frac{π}{2}$与圆C交于O、Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值;
(3)在(2)的条件下,求三角形OMN的内切圆圆心的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知点O(0,0),A(a,0),B(0,a),a是正常数,点P在直线AB上,且$\overrightarrow{AP}$=t•$\overrightarrow{AB}$(0≤t≤1),求$\overrightarrow{OA}•\overrightarrow{OP}$的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.从5个男生和3个女生中选4人分别担当4个学科的课代表,要求至少有2个女生,则不同的选法种数为35种.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则向量2$\overrightarrow{a}$+3$\overrightarrow{b}$在向量2$\overrightarrow{a}$+$\overrightarrow{b}$方向上的投影为(  )
A.$\frac{19\sqrt{13}}{13}$B.$\frac{6\sqrt{13}}{13}$C.$\frac{5\sqrt{6}}{6}$D.$\frac{8\sqrt{3}}{13}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知角α的终边过点(sinθ,cosθ),则下列结论一定正确的是(  )
A.α=θB.α=θ+$\frac{π}{2}$C.sin2θ+sin2α=1D.sin2θ+cos2α=1

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知数列{an}满足a1=-1,|an-an-1|=2n-1(n∈N,n≥2),且{a2n-1}是递减数列,{a2n}是递增数列,则a2016=$\frac{{2}^{2016}-1}{3}$.

查看答案和解析>>

同步练习册答案