相关习题
 0  227475  227483  227489  227493  227499  227501  227505  227511  227513  227519  227525  227529  227531  227535  227541  227543  227549  227553  227555  227559  227561  227565  227567  227569  227570  227571  227573  227574  227575  227577  227579  227583  227585  227589  227591  227595  227601  227603  227609  227613  227615  227619  227625  227631  227633  227639  227643  227645  227651  227655  227661  227669  266669 

科目: 来源: 题型:填空题

14.已知函数f(x)=ex-ax-1,g(x)=ln(ex-1)-lnx,若存在m>0,使f(g(m))>f(m)成立,则a的取值范图是(1,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知0<x<y,2<x2$+y<\frac{5}{2}$,则下列不正确的是(  )
A.sinx2<sin($\frac{5}{2}$-y)B.sinx2>sin(2-y)C.sin(2-x2)<sinyD.sinx2<cos(y-1)

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$,则不等式f(log2x)-f(log${\;}_{\frac{1}{2}}$x)≥$\frac{2({e}^{2}-1)}{{e}^{2}+1}$的解集为(  )
A.[$\frac{1}{2}$,+∞)B.[2,+∞)C.(0,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目: 来源: 题型:解答题

11.2015年世界级体育盛会--世界田径锦标赛于8月22日下午在中国国家体育场鸟巢隆重开幕,在田径锦标赛期间需要大量大学生志愿者.志愿者先由相关的学校先进行选拔,合格者方能参加锦标赛组委会的面试.接到任务的某学校对报名的志愿者进行了一次相关知识小测试.现从中随机抽取100名学生的测试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在测试成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进入第二轮面积,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受学校组织模拟考官的面试,求第4组至少有一名学校被考官面试的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

10.为了测得一铁塔AB的高度,某人在塔底B的正东方向C处测得塔顶A的仰角为45°,再由C点沿北偏东30°方向走了20米后到达D点,又测得塔顶A的仰角为30°,则铁塔AB的高度为20米.

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=(  )
A.0B.5C.45D.90

查看答案和解析>>

科目: 来源: 题型:解答题

8.某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.右图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图:

已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.
(Ⅰ)求m,n的值,并求这100名学生月消费金额的样本平均数$\overline x$(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)现采用分层抽样的方式从月消费金额落在[350,450),[550,650)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量X,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知等差数列{an}的通项公式${a_n}=3n-1(n∈{N^*})$.设数列{bn}为等比数列,且${b_n}={a_{k_n}}$.
(Ⅰ)若b1=a1=2,且等比数列{bn}的公比最小,
(ⅰ)写出数列{bn}的前4项;
(ⅱ)求数列{kn}的通项公式;
(Ⅱ)证明:以b1=a2=5为首项的无穷等比数列{bn}有无数多个.

查看答案和解析>>

科目: 来源: 题型:解答题

6.为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如表.
12345
男生14322
女生01331
(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?
(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X,求随机变量X的分布列和数学期望;
(Ⅲ)试判断男学生阅读名著本数的方差${s_1}^2$与女学生阅读名著本数的方差${s_2}^2$的大小(只需写出结论).

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数$f(x)=\frac{1}{3}a{x^3}-\frac{1}{2}b{x^2}+x$,连续抛掷两颗骰子得到的点数分别是a,b,则函数f′(x)在x=1处取得最值的概率是(  )
A.$\frac{1}{36}$B.$\frac{1}{18}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案