相关习题
 0  227662  227670  227676  227680  227686  227688  227692  227698  227700  227706  227712  227716  227718  227722  227728  227730  227736  227740  227742  227746  227748  227752  227754  227756  227757  227758  227760  227761  227762  227764  227766  227770  227772  227776  227778  227782  227788  227790  227796  227800  227802  227806  227812  227818  227820  227826  227830  227832  227838  227842  227848  227856  266669 

科目: 来源: 题型:选择题

12.不等式9x2+6x+1≥0的解集为(  )
A.{x|x$≠-\frac{1}{3}$}B.{-$\frac{1}{3}$}C.D.R

查看答案和解析>>

科目: 来源: 题型:选择题

11.某中学领导采用系统抽样方法,从该校某年级全体1200名学生中抽取80名学生做视力检查.现将1200名学生从1到1200进行编号,在1~15中随机抽取一个数,如果抽到的是6,则从46~60这15个数中应抽取的数是(  )
A.47B.48C.51D.54

查看答案和解析>>

科目: 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{19}{20}$B.$\frac{20}{21}$C.$\frac{21}{22}$D.$\frac{22}{23}$

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数y=$\sqrt{2}$sin(x+$\frac{π}{4}$).
(1)求f(x)最小正周期;
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值;
(3)求f(x)的递减区间.

查看答案和解析>>

科目: 来源: 题型:解答题

8.求直线y=-$\sqrt{3}$(x-2)绕点(2,0)按逆时针方向旋转30°所得的直线方程.

查看答案和解析>>

科目: 来源: 题型:选择题

7.在数列{an}中,$\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+2}}$=$\frac{2}{{a}_{n+1}}$,且$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{10}}$+$\frac{1}{{a}_{6}}$=12,则$\frac{1}{{a}_{8}}$+$\frac{1}{{a}_{4}}$=(  )
A.12B.24C.8D.16

查看答案和解析>>

科目: 来源: 题型:选择题

6.直线l1:3x-y+1=0,直线l2过点(1,0),且它的倾斜角是l1的倾斜角的2倍,则直线l2的方程为(  )
A.y=6x+1B.y=6(x-1)C.y=$\frac{3}{4}$(x-1)D.y=-$\frac{3}{4}$(x-1)

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知函数y=f(x)的定义域为R,且y=f(x-1)的图象关于x=1对称,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}tan\frac{πx}{4},0≤x≤1}\\{(\frac{1}{4})^{x}+1,x>1}\end{array}\right.$若关于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且仅有6个不同实数根,则实数a的取值范围是a=$\frac{5}{4}$或0<a<1.

查看答案和解析>>

科目: 来源: 题型:填空题

4.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足$\frac{cosB}{cosC}$+$\frac{2a}{c}+\frac{b}{c}$=0,则角C的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.下图为函数y=Asin(ωx+φ)的一段图象,已知A>0,ω>0,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)写出函数y的解析式;
(2)若函数y=g(x)与y=Asin(ωx+φ)的图象关于直线x=2对称,求y=g(x)的解析式.

查看答案和解析>>

同步练习册答案