相关习题
 0  227682  227690  227696  227700  227706  227708  227712  227718  227720  227726  227732  227736  227738  227742  227748  227750  227756  227760  227762  227766  227768  227772  227774  227776  227777  227778  227780  227781  227782  227784  227786  227790  227792  227796  227798  227802  227808  227810  227816  227820  227822  227826  227832  227838  227840  227846  227850  227852  227858  227862  227868  227876  266669 

科目: 来源: 题型:解答题

1.2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为$\frac{1}{3}$,赔钱的概率是$\frac{2}{3}$;乙股票赚钱的概率为$\frac{1}{4}$,赔钱的概率为$\frac{3}{4}$.对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的右焦点为F,双曲线${x}^{2}-\frac{{y}^{2}}{3}=1$的一条渐近线与椭圆C交于A,B两点,且
AF⊥BF,则椭圆C的离心率为$\sqrt{3}$-1.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,它的四个顶点构成的四边形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,过F作两条互相垂直的直线l1,l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于N点.
(1)求证:线段PQ的中点在直线ON上;
(2)求$\frac{|PQ|}{|FN|}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知具有线性相关关系的两个变量x,y之间的一组数据如表:
x01234
y2.24.34.54.86.7
且回归直线方程为$\widehat{y}$=bx+2.6,根据模型预报当x=6时,y的预测值为(  )
A.5.76B.6.8C.8.3D.8.46

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0,$\frac{π}{3}$),则cos(2$α+\frac{5π}{6}$)=(  )
A.$±\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=x(1-a|x|).
(1)当a>0时,关于x的方程f(x)=a有三个相异实根x1,x2,x3,设x1<x2<x3,求$\frac{{x}_{1}}{{x}_{2}+{x}_{3}}$的取值范围;
(2)当a≤1时,f(x)在[-1,1]上的最大值为M,最小值为m,若M-m=4,求a的值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知椭圆$\frac{x^2}{a^2}+{y^2}=1$的左、右焦点为F1、F2,点F1关于直线y=-x的对称点P仍在椭圆上,则△PF1F2的周长为2$\sqrt{2}$+2.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆$\frac{x^2}{9}+{y^2}=1$,过A(0,1)作互相垂直的两直线AB,AC与椭圆交于B,C两点.
(Ⅰ)若直线BC经过点$(\frac{8}{5},\frac{4}{5})$,求线段BC的长;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的四个顶点构成一个面积为$2\sqrt{3}$的四边形,该四边形的一个内角为60°.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l与椭圆E相交于A,B两个不同的点,线段AB的中点为C,O为坐标原点,若△OAB面积为$\frac{{\sqrt{3}}}{2}$,求|AB|•|OC|的最大值.

查看答案和解析>>

同步练习册答案