相关习题
 0  227689  227697  227703  227707  227713  227715  227719  227725  227727  227733  227739  227743  227745  227749  227755  227757  227763  227767  227769  227773  227775  227779  227781  227783  227784  227785  227787  227788  227789  227791  227793  227797  227799  227803  227805  227809  227815  227817  227823  227827  227829  227833  227839  227845  227847  227853  227857  227859  227865  227869  227875  227883  266669 

科目: 来源: 题型:解答题

11.2015年12月27日全国人大常委会表决通过了人口与计划生育法修正案全面二孩定于20I6年1月1日起正式实施,为了解适龄民众对放开生育二胎政策的态度,某机构从某市选取70后和80后作为调查对象.随机调查了100位,得到数据如下表:
 生二孩不生二孩合计
70后301545
80后451055
合计7525100
(1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若以该市70后公民中随机抽取3位,记其中生二孩的人数为X,求随机变量X的分布列和数学期望.
(2)根据调查数据,是否在犯错误的概率不超过0.1的前提下(有90%以上自把握)认为“生二孩与年龄有关”?并说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

10.设△ABC的内角A,B,C所对边的长分别是a,b,c.且c2=2a2+b2,可导函数f(x)满足xf′(x)<2f(x),则(  )
A.sin2A•f(sinB)<sin2B•f(sinA)B.sin2A•f(sinA)>sin2B•f(sinB)
C.cos2B•f(sinA)<sin2A•f(cosB)D.cos2B•f(sinA)>sin2A•f(cosB)

查看答案和解析>>

科目: 来源: 题型:解答题

9.设椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点分别为F1,F2,点M是椭圆上任意一点,点A的坐标为(2,1),求|MF1|+|MA|的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

8.(x+$\frac{1}{x}$-2)5展开式中常数项为(  )
A.252B.-252C.160D.-160

查看答案和解析>>

科目: 来源: 题型:填空题

7.在平面直角坐标系中,已知三个点列{An}、{Bn}、{Cn},其中An(n,an)、Bn(n,bn)、Cn(n-1,0),满足向量$\overrightarrow{{A}_{n}{A}_{n+1}}$与向量$\overrightarrow{{B}_{n}{C}_{n}}$共线,且bn+1-bn=6,a1=b1=0,则an=3n2-9n+6(n∈N*).(用n表示)

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知点P是函数y=sin(2x+α)图象与x轴的一个交点,A,B为P点右侧距离点P最近的一个最高点和最低点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(  )
A.$\frac{{π}^{2}}{4}$-1B.$\frac{3{π}^{2}}{16}$-1C.$\frac{3{π}^{2}}{4}$-1D.$\frac{{π}^{2}}{8}$-1

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆C与y轴交于A、B两点,|AB|=2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.甲、乙、丙人应邀参加某综艺栏目的猜数游戏,猜中则游戏结束,主持人先给出数字所在区间[3,10],让甲猜(所猜数字为整数,下同),如果甲猜中,甲将获得1000元奖金;如果甲未猜中,主持人给出数字所在区间[5,8],让乙猜,如果乙猜中,甲和乙均可获得5000元奖金;如果乙未猜中,主持人给出数字所在区间[6,7],让丙猜,如果丙猜中,甲、乙和丙均可获得2000元奖金,否则游戏结束.
(1)求甲至少获得5000元奖金的概率;
(2)记乙获得的奖金为X元,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

3.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:
学生序号i 1 2 3 4 5 6 7
 数学成绩xi 60 6570  7585  8790 
 物理成绩yi 7077  8085  9086  93
(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;
(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);
若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:回归直线的方程是:$\widehat{y}=bx+a$,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}-b\overline{x}$.
 $\overline{x}$ $\overline{y}$ $\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}$ $\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$
 7683  812526

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆D:x2+y2=b2分别与射线y=x(x≥0)交于A、B两点,且|OA|=$\frac{2\sqrt{10}}{5}$|OB|=$\frac{2\sqrt{10}}{5}$
(I)求椭圆C的方程;
(Ⅱ)若不经过原点O且斜率为k的直线l与椭圆交于M、N两点,且S△OMN=1,证明:线段MN中点P(x0,y0)的坐标满足x${\;}_{0}^{2}$+4y${\;}_{0}^{2}$=2.

查看答案和解析>>

同步练习册答案