相关习题
 0  227690  227698  227704  227708  227714  227716  227720  227726  227728  227734  227740  227744  227746  227750  227756  227758  227764  227768  227770  227774  227776  227780  227782  227784  227785  227786  227788  227789  227790  227792  227794  227798  227800  227804  227806  227810  227816  227818  227824  227828  227830  227834  227840  227846  227848  227854  227858  227860  227866  227870  227876  227884  266669 

科目: 来源: 题型:填空题

1.已知中心在坐标原点的椭圆C的右焦点为F(1,0),点F关于直线y=$\frac{1}{2}$x的对称点在椭圆C上,则椭圆C的方程为$\frac{5{x}^{2}}{9}$+$\frac{5{y}^{2}}{4}$=1.

查看答案和解析>>

科目: 来源: 题型:填空题

20.给出下列四个命题:
①命题“?x∈R,x2>0”的否定是“?x∈R,x2≤0”;
②函数y=f(x)的定义域为(-∞,-1)∪(1,+∞),其图象上任一点P(x,y)满足x2-y2=1,则函数y=f(x)可能是奇函数;
③若a,b∈[0,1],则不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{π}{4}$
④函数y=log2(x2-ax+2)在[2,+∞)恒为正,则 实数a的取值范围是(-∞,$\frac{5}{2}$).
其中真命题的序号是①②④.(请填上所有真命题的序号)

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数m满足f(log3m)+$f({log_{\frac{1}{3}}}m)$≤2f(1),则m的取值范围是(  )
A.(0,3]B.[$\frac{1}{3}$,3]C.[$\frac{1}{3}$,3)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

18.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{2π}{3}$,$\overrightarrow a=({3,0}),|{\overrightarrow b}|=2$,则$|{\overrightarrow a+2\overrightarrow b}|$等于(  )
A.13B.$\sqrt{37}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知函数f(x)=ax3-3x+2016的图象在(1,f(1))处的切线平行于x轴,则a=1.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,椭圆的右焦点F(c,0),椭圆的右顶点为A,上顶点为B,原点到直线AB的距离为$\frac{\sqrt{6}}{3}$.
(I)求椭圆C的方程;
(Ⅱ)判断在x轴上是否存在异于F的一点G,满足过点G且斜率为k(k≠0)的直线l与椭圆C交于M、N两点,P是点M关于x轴的对称点,N、F、P三点共线,若存在,求出点G坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知点P是曲线f(x)=x3-x上的点,且点P的横坐标是1.
(I)求证:函数f(x)在[1,+∞)上单调递增;
(Ⅱ)求曲线f(x)在点P处的切线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过焦点且垂直于x轴的直线被椭圆E截得的线段长为2.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线y=kx+1与椭圆E交于A,B两点,以AB为直径的圆与y轴正半轴交于点C.是否存在实数k,使得△ABC的内切圆的圆心在y轴上?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]上有表达式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值(用k表示);
(2)写出f(x)在[-3,2]上的表达式,并讨论f(x)在[-3,2]上的单调性(不要证明);
(3)求出f(x)在[-3,2]上的最小值和最大值,并求出相应的自变量的取值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在如图所示的正方体ABCD-A1B1C1D1中:
(1)AB与A1D1是否垂直?
(2)AC与B1D1是否垂直?

查看答案和解析>>

同步练习册答案